
1

Paper HW-06

SAS® to Publishable Excel... Seamlessly – Using ODS, XML, and Other Tricks
Harry Droogendyk, Stratia Consulting Inc.

Marje Fecht, Prowerk Consulting Ltd

ABSTRACT
Do you have legacy "listing" reports that you want to publish easily in Excel? Do you currently output to Excel but
dislike having to massage the output to get things just right?

This hands-on workshop will introduce you to XML, and show you how to leverage the strengths of ODS to generate
custom-formatted output in Excel. Topics include:

• creating Excel files using DATA _NULL_
• using SAS’s ODS ExcelXP tagsets to easily customize Excel document properties
• using SAS to create CSV and XML data to feed Excel pivot tables

This workshop will prepare you to use ODS for creating Excel reports that are ready to publish with minimal (or no)
post-processing.

INTRODUCTION
There are an abundance of tools and approaches to moving data from SAS into Excel. Each approach has an
intended purpose along with a long list of advantages and disadvantages. Since the authors understand and
recognize (from personal experience) that time and resources don’t always permit a total rewrite of production
code that is working just fine, the focus of this paper is to help you take existing legacy code and make the
additions and alterations necessary to publish your results in Excel. Further, our goal is to avoid much of the post-
processing sometimes required to make the Excel output acceptable to the information consumer.

Most of the Excel content created by the examples in this paper is accessible in Excel 2000 or later. However,
where features are only available in Excel 2002 or Excel 2003, they will be noted in the paper.

GOOD OLE DATA _NULL_
I bet you have DATA _NULL_ code lurking in some of your production processes, and it has probably been running
for years to produce reports that are widely used throughout your organization. I bet you have also occasionally
tweaked the code to make the output just a little more functional and a little bit prettier. Perhaps your DATA
NULL began as a paper report many moons ago (if you are as old as the authors, you will recall that is the only
kind of report we used to produce). However, since our user community requires their reports in Excel, you now
open the .txt file in Excel, define the columnar input and tweak the fonts, colors, etc. to improve the data
presentation. Perhaps you even wrote an Excel macro to carry out some of the post processing.

If you recognize this scenario, then it’s likely you now have a multi-step process in place that runs the DATA
NULL step, opens the file in Excel, runs an Excel macro, saves the file in Excel format, and publishes. Let’s look
at a simple example of the legacy code and then examine some additions to enhance the Excel output directly from
SAS and hopefully avoid most, if not all, of the post processing.

EXAMPLE 1A: LEGACY CODE
Consider this simple data step to create a listing report. You had to figure out proper columns for column headings
and data, so that everything lined up nicely, which meant anticipating future data as well. Your legacy code likely
has a lot of computations, formatting, and complexity but for illustrative purposes, our focus is simply on the output.

filename out 'c:\temp\HOW_1a_legacy.txt';
data _null_;
 file out;
 if _n_ = 1 then /*title and Column Hdgs*/
 put @8 'Legacy Code - Text File Output' //
 @1 'Name' @20 'Gender' @30 'Age' @40 'Height';

2

 set sashelp.class;
 format height 5.1;
 put @1 name @23 sex @30 age @40 height;
run;

Partial Output – TXT file contents

EXAMPLE 1B: LEGACY CODE – MODIFIED FOR SIMPLE EXCEL OUTPUT
But, there’s an easier way! To output more simply to an XLS file, insert a TAB character (‘09’x on ASCII systems;
‘05’x on EBCDIC) between the data elements to create a tab delimited file. No more worries about what columns to
write to and no column number alterations needed when the data elements grow in the future.

filename out 'c:\temp\HOW_1b_legacy_tabs.xls';
data _null_;
 retain t '09'x; ** ASCII tab character ('05'x on EBCDIC);
 file out;
 if _n_ = 1 then /*title and Column Hdgs*/
 put 'Legacy Code - Tab delimited output' /
 'Name' t 'Gender' t 'Age' t 'Height';
 set sashelp.class;
 put name t sex t age t height;
run;

Partial Output - appearance of file when opened in Excel
Legacy Code - Tab delimited output
Name Gender Age Height
Alfred M 14 69
Alice F 13 56.5
Barbara F 13 65.3
Carol F 14 62.8
Henry M 14 63.5
James M 12 57.3
Jane F 12 59.8
Janet F 15 62.5
Jeffrey M 13 62.5
John M 12 59

 Legacy Code - Text File Output

Name Gender Age Height
Alfred M 14 69.0
Alice F 13 56.5
Barbara F 13 65.3
Carol F 14 62.8
Henry M 14 63.5
James M 12 57.3
Jane F 12 59.8
Janet F 15 62.5
Jeffrey M 13 62.5

3

EXAMPLE 1C: ENHANCING LEGACY CODE TO SEND IMPROVED OUTPUT TO EXCEL
In the previous example, titles and column headings were hard-coded using PUT statements. In reality, you likely
used multi-row column headings and thus had to deal with getting everything in your code to match up.
Furthermore, the Excel file that resulted from the first example had zero formatting features. We got the report into
Excel and stopped there!

A few minor alterations to the legacy code produce a slightly more pleasing look:

• remove the manual “tabbing”
• remove the manual titles and column headings, and replace with Title / Footnote statements
• replace the file statement with an ODS statement
• alter the FILE destination.

ods listing close;
ods html3 body = 'c:\temp\HOW_1c_legacy_ODS.xls'; * use HTML in v8;
ods noresults; * disables Results Viewer
window;
title "Legacy Code - Simple ODS inspired output";
data _null_;
 set sashelp.class;
 file print
 ods=(var=(name sex age height));
 put name sex age height _ods_;
run;
ods html3 close;
ods listing;
ods results; * enables Results Viewer window;

Partial Output - appearance when output file is opened in Excel

4

EXAMPLE 1D: FURTHER ENHANCEMENTS
There are many easy adjustments that can be made to the program to enhance the output further. ODS
automatically takes advantage of any variable labels and formats that are in place. Additionally, you can use the
predefined ODS styles to change the Excel appearance. Note the use of the title options to alter the color and
justification of the title text. Additional options are available to alter other characteristics such as font type and font
size. These same options can be applied to SAS footnotes.

ods listing close;
ods html3 body = 'c:\temp\HOW_1d_legacy_ODS_Fmtg.xls' style = statdoc;
ods noresults;
title c=red j=l "Legacy Code - Simple ODS inspired output";
data _null_;
 set sashelp.class;
 label name = 'Name of Student'
 sex = 'Gender'
 height = 'Height in Inches' ;
 format height 3.;
 file print ods=(var=(name sex age height));
 put name sex age height _ods_;
run;
ods html3 close;
ods listing;
ods results;

Partial Output - appearance when output file is opened in Excel

5

EXAMPLE 1E: PRODUCING MULTISHEET EXCEL REPORTS
Once you begin publishing results in Excel, it isn’t long before you must have multi-sheet output! In Version 8, this
could be accomplished, but not easily, and it often meant post-processing of the output file with Excel macros.
With SAS 9, there are various approaches for producing multi-sheet Excel output. The approach demonstrated
here takes advantage of a simple PROC PRINT with a BY statement. For regular output, the BY statement
produces sections of output. The ExcelXP tagset (SAS 9) produces one worksheet per by group. This
functionality requires Excel 2002 or 2003.

ods listing close;
ods tagsets.ExcelXP path='c:\temp' file='HOW_1e_legacy_MultiSheet.xls'
 style=statdoc options(doc='help' sheet_interval='bygroup');
 /* doc='help' lists all ExcelXP tagset options, in the LOG */
ods noresults;

title "Re-worked Legacy Code - Multi-Sheet Excel Workbook";
proc sort data=sashelp.class

out=class;
 by sex;
run;

proc print data=class noobs label split='*';
 by sex;
 label name = 'Name of*Student'
 sex = 'Gender'
 age = '*Age'
 weight = 'Weight in*Pounds'
 height = 'Height in*Inches';
 format height 3.;
run;
ods tagsets.ExcelXP close;
ods listing;
ods results;

When the output file is opened in Excel, notice that there are two sheets with naming as produced by ODS. And,
the title is in the Header of the worksheet!

6

Output – appearance when output file is opened in Excel

The “Page Setup” window shows the Excel heading created by the SAS title statement:

7

EXAMPLE 1F: CONTROLLING EXCEL FEATURES FROM SAS
Instead of post-processing the work book to modify sheet names, and change functionality such as headers and
data filters, the ExcelXP tagset has many options that enable further worksheet control. Excel 2002 or 2003
required.

ods listing close;
ods tagsets.ExcelXP path='c:\temp' file='HOW_1f_legacy_CUSTOM.xls' style=statdoc
 options (sheet_name = 'SESUG_HOW' frozen_headers = 'Yes' autofilter = 'All'
 auto_subtotals = 'Yes');
ods noresults;

title "Controlling Excel Features via ODS";
proc print data=sashelp.shoes noobs;
 sum stores sales inventory returns;
run;

ods tagsets.ExcelXP close;
ods listing;
ods results;

Output – as it appears when you open the file in Excel. Subsidiary “Algiers” has been selected using the auto-filter,
notice the automatic sub-totals in line 397.

Using the SAS 9 ExcelXP tagset, there is a wealth of additional features to enhance and control Excel output. See
the Recommended Reading section of this paper for a number of excellent ExcelXP tagset resources.

EXCEL PIVOT TABLES – POPULATING THEM PAINLESSLY
After the users start working with your Excel reports, it will not be long before they ask for further functionality
including “slice and dice” capability. Excel pivot tables enable you to explore many views of the data including
high level summaries while providing drill down to more detailed layers. Typically, an Excel Pivot Table has
dimensions (row, column and page variables) along with fact data (such as Total Sales, Average Volume, and
Highest Temperature). Excel pivot tables are typically created using the Excel PivotTable wizard. In addition, due
to Excel’s limitation on maximum rows and the ease with which external data can be refreshed, pivot tables are
commonly populated from an external data source.

8

When you publish your pivot table report, you must have a strategy for easily refreshing the data. This also
means you need a reliable and consistent mechanism for feeding source data into Excel. Two candidates are CSV
and XML files, both of which are easily produced by SAS. Unless drill down capability to detail data is required,
pivot tables work best if they’re sourced from a summarized cube rather than a large detail file. PROC summary
is great at producing cubes.

The sample data used in the following example is from the summarized data in SASHELP.PRDSALE:

proc export data=sashelp.prdsale
 outfile='c:\temp\PrdSale_dataInExcel.xls';
run;

After opening c:\temp\PrdSale_dataInExcel.xls:

A SIMPLE PIVOT TABLE
To create a pivot table using data that already exists in Excel,

o Open the excel spreadsheet that contains your data
o Select Data è Pivot Table and Pivot Chart Report
o Notice that the data source defaults to Microsoft Office Excel list or database, which is correct in this

instance

o Click Next
o By default, Excel assumes that all of the rows and columns are included. Note that Excel understands that

the column names are in row 1. Confirm by clicking Next.

9

o Accept the default of New Worksheet for locating the data source (note that you can then hide the original

data so it is not visible to the report consumers).

o Click Layout to design the pivot and move the columns into their initial roles as shown. Note that the

report user can change the roles of all columns to meet their reporting needs. Click OK.

10

o Click Options to control reporting features and data display. Click OK.

o Note the “Refresh on open” check-box on the bottom left of the options panel. Keep this in mind when we

discuss CSV sourced pivot tables in a later section of the paper!

o Click OK and then Finish to complete the design phase and display the Pivot Table report.

11

The initial display of the pivot table may not have optimum formatting and column widths. However, these can be
changed easily through field settings and other options. Following a few field setting and width changes, the
resulting pivot table is:

The pivot table we just created is great for navigating through the data and exploring trends. But, sourcing the pivot
table directly from Excel is not ideal if

o your detail data (or cube) exceeds Excel’s row limit
o you plan on regular data updates.

A more production-oriented approach is to source the Pivot Table from an external data source, so that whenever
the Pivot opens, the table can be refreshed (synchronized) with the current data. A pivot table can be sourced from
a wide variety of external data including XML, CSV files, MS Access data bases, and many others.

CREATING XML DATA FROM SAS – EASILY
Since version 8, SAS has been able to read and write XML data. In SAS 9 this capability has been greatly
enhanced. While the nitty-gritty details of XML representation, XML maps and the like are beyond the scope of this
paper, the following simple example illustrates how easy it is to create XML data files.

Without knowing anything about XML file specifics, you can easily create an XML file from your summary data. In
this example, we show a typical summary step to produce a cube from detail data, for instructional purposes.
Please note that sashelp.prdsale is already summarized so a simple copy to the SESUG libref is all that would really
be needed.

12

libname sesug xml 'C:\temp\Prdsale_xml.xml'; ** available in V8 and SAS 9;
/* these data are already summarized - code illustrates "creating the cube" */
proc summary data=sashelp.prdsale nway;
 class country region division prodtype product year quarter month;
 var actual predict;
 output out=sesug.pivot(drop = _type_ _freq_) sum=;
run;

If you open the resulting file with Excel, and when prompted, select XML List as display format, the initial view is:

XML file displayed in Excel 2002/2003 – filters are automatically in place on open

While this demonstrates one more way to get data from SAS into Excel – easily, our goal for creating the XML
file is to source a refreshable pivot table using the XML data. Unfortunately, it won’t be as seamless as we might
hope.

PIVOT TABLE - DATA SOURCE = XML
If you have production code that cranks out regular updates to your data in XML format, you can source an Excel
Pivot Table with XML.

Open a new Excel workbook.

o Select Data è XML è Import …
o Locate the XML file to import and click Import
o Click OK from the dialog asking about creating a Schema

13

o Click OK to confirm the placement of the imported data (begin in first cell)

The data now reside in Excel. Notice that a refresh XML data choice is available!

Mouse button 2 è XML è Refresh XML data.

To build a pivot table from these data, you simply follow the identical steps used to create the pivot table in an
earlier section. To ensure that the users are always accessing the most current data, a double-refresh is required!!
You must go into the XML-sourced sheet, right-click è XML è Refresh XML data before opening the pivot. It’s
also necessary to ensure the table option for refresh on open is checked so the latest XML data are loaded when
the pivot table displays. The requirement for the double-refresh makes XML a poor choice for sourcing your
pivot table. The next section of the paper outlines the use of CSV files, which are currently a much better choice
than XML for creating automatically updating pivot tables.

DEFINING THE DATA SOURCE - CSV
Populating your pivot table from XML is easy. However, if you must load data of more than Excel’s 64K row limit or
you cannot deal with the REALLY huge XML file (bloated by presence of XML tags), an alternative exists! Instead
of sourcing your pivot table through XML, you can source it from a CSV (comma separated value) file which is not
limited by Excel’s 64K row limit. However, since CSV is not one of the default data souces in the Pivot table
wizard, a new data source must be defined.

Step 1: You can easily create a CSV from your SAS data set using ODS:

ods noresults;
ods listing close;
ods csv file='c:\temp\prdsale.csv';

proc print data=sashelp.prdsale noobs;
run;

ods csv close;
ods listing;
ods results;

Step 2: The PivotTable Wizard will guide us through the maze of external data sources, to create a new data
source:

o Select Data è PivotTable and PivotChart Report …
o Select External Data Source and click Next

14

o click Get Data

o Select <New Data Source> and click OK

15

o Enter a name for the data source, select the CSV driver, and click Connect.

It is apparently a feature of Microsoft to display the drivers in another language ☺

o Uncheck Use Current Directory and click Select Directory to navigate to the location of your

CSV file

o click OK and OK again

16

o click OK

o ensure the data source you just added is high-lighted and click OK

The data source is now defined and will be available to you in Excel!
Now, you can focus on selecting the CSV you would like to use and then assemble the columns and layout you
require.

o the CSV file we’re looking for is prdsale.csv, scroll down until it appears in the list, click the +

sign to view the list of available fields

17

o double-click on desired columns or select the column name and click > to select them. If all

columns of prdsale.csv are to be selected, click the CSV file name and click >.

18

o click Next

o if filtering is required, select the columns and filtering rules and click Next

19

o if required, select sort criteria and click Next. If you don’t specify SORT criteria, your initial

display could be slightly illogical.

o select Return Data to Microsoft Office Excel and click Finish to bring control back to the

PivotTable Wizard.

20

o click Next to continue with the PivotTable Wizard (see earlier instructions for field selection and
customization)

o Remember to select “Refresh on open” in the PivotTable options panel if this action is required.

BRIGHT HOPE FOR THE FUTURE!
With the advent of SP4 in v9.1, the SAS Add-in for Microsoft Office component of the BI platform provides the
ability to source Excel PivotTables directly from SAS datasets! No more intermediate CSV files, Access Databases
or nasty Data Source setup steps to endure.

CONCLUSION
Whew, this paper covers a lot of ground !! Did you think we’d get from ancient data _null_ listing reports to XML
data files feeding publishable Excel OLAP cubes in one paper?

SAS provides the tools to get there from here. Using the still-evolving ExcelXP tagsets in conjunction with
customizable style templates, you can create Excel spreadsheet output that’s ready for publication with very little, if
any, manual intervention. And, if you’re currently producing listing reports, or delimited output that requires you to
manually massage your report files, SAS has made it relatively painless to affect the code changes required to
seamlessly produce slick Excel output.

ACKNOWLEDGMENTS

Eric Gebhart of SAS for his expert assistance with ExcelXP tagset details.

RECOMMENDED READING
DelGobbo, V. 2006. "Creating AND Importing Multi-Sheet Excel Workbooks the Easy Way with SAS®".
Proceedings of the Thirty-First Annual SAS Users Group International Conference, 31. CD-ROM. Paper 115.

Gebhart, E. 2005. " ODS Markup: The SAS® Reports You've Always Dreamed Of ". Proceedings of the Thirtieth
Annual SAS Users Group International Conference, 30. CD-ROM. Paper 85.

Zender, C. 2005. "The Power of Table Templates and DATA _NULL_". Proceedings of the Thirtieth Annual SAS
Users Group International Conference, 30. CD-ROM. Paper 88.

SAS ODS Markup Resources: http://support.sas.com/rnd/base/topics/odsmarkup/

http://support.sas.com/rnd/base/topics/odsmarkup/

21

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Marje Fecht
Prowerk Consulting
Marje.Fecht@prowerk.com
www.prowerk.com

Harry Droogendyk
Stratia Consulting Inc.
sesug@stratia.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

mailto:Marje.Fecht@prowerk.com
http://www.prowerk.com
mailto:sesug@stratia.ca

