
SESUG 2016

- 1 -

PAPER RV_225

SAS® Formats: Effective and Efficient

Harry Droogendyk,

Stratia Consulting Inc., Lynden, ON

ABSTRACT

SAS® formats, whether they be the vanilla variety supplied with the SAS system, or fancy ones you create yourself,
will increase your coding and program efficiency. (In)Formats can be used effectively for data conversion, data
presentation and data summarization, resulting in efficient, data-driven code that's less work to maintain. Creation
and use of user-defined formats, including picture formats, are included in this paper.

INTRODUCTION

If you've been in the programming business for any length of time, you're well aware that your data is not necessarily
stored as you enter it or as it is displayed when presented for your viewing. For example, open up an editor on your
ASCII machine and type the word SESUG in the first record and save the file. If we display the file in hexadecimal
representation, we do not see 'SESUG', rather, the five bytes appear as ‘53 45 53 55 47’. However, the hexadecimal
representation is really only a more readable form of the binary format a computer ultimately stores and uses. How
does an ASCII machine store the word SESUG? Each of the five bytes contains eight bits, a total of 40 bits,
0101001101000101010100110101010101000111 . That's just plain ugly!

Without getting too technical, matters become more complicated when we consider numbers, especially those stored
in a SAS dataset. To enable SAS to store numbers of large magnitude and perform calculations that require many
digits of precision to the right of the decimal point, SAS stores all numbers using floating-point representation. You
may know this format as scientific notation. Values are represented as numbers between 0 and 1 times a power of

10. e.g. the number 1 in scientific notation is .1 x 10
1

We can look at this and do the math and come up with an answer of 1. But, just to confuse the matter even further,
SAS stores numbers in scientific notation, not in base 10 (like we humans count), but in base 2. In hexadecimal
format the numeral 1 appears as 3F F0 00 00 00 00 00 00. Certainly doesn't look like 1 to me! Ahhh, aren't you glad
you don't have to work with the internals?

It's evident that something happens to our data after we enter it, something else before it's displayed to us. The stuff

we can easily read is modified by SAS to a format it can understand, massage and store. In order to make the data
meaningful to us, SAS must re-format the data for our reading pleasure when pumping it back out. Thankfully we're
not limited to SAS's idea of how things ought to be - we can use informats and formats to direct SAS how to input and

display our data.

This paper will introduce you to SAS-supplied and user-defined formats and informats and how to use them to

effectively and efficiently deal with data conversion and presentation tasks.

Let's begin with some definitions and examples. An informat is an instruction used to read data values into a SAS

variable. In addition, if a variable has not yet been defined, SAS uses the informat to determine whether the variable
ought to be numeric or character. The informat is also used to determine the length of character variables. A
format is defined as an instruction that SAS uses to write data values. Formats are used to control the written
appearance of data values. Both informats and formats are of the form: <$> name <w> . <d>

 $ required prefix for character (in)formats

 format up to 7 characters long for character, 8 for numeric, may not end in a number!

v9 format names may be 31 / 32 characters long

 w width of value to be read / written, includes commas, decimal places, dollar signs etc…

 . a period, every format must have a period, distinguishes formats from variable names

 d decimal places, optional, only for numeric (in)formats

For example: $char20. - 20 byte character format

 dollar12.2 - 12 byte numeric format, with 2 decimal places

SAS® Formats: Effective and Efficient, continued SESUG 2016

2

HAVE YOU EVER USED FORMATS OR INFORMATS?
"Are you kidding?!", you say, "I haven't been using SAS that long, formats are confusing!". Well, I can say with
certainty you have used formats, even if SAS was doing it behind the scenes on your behalf. Consider the following
simple data step and PRINT procedure:

data weather;

 input date city $ degrees_celsius ;

cards;

20160117 Edmonton -134.3456

20160204 Toronto -2.5

20160328 Calgary 7.1

20160413 Ottawa 12.64

20160510 Lynden 17.2

run;

proc print data=weather;

run;

 degrees_

Obs date city celsius

 1 20160117 Edmonton -134.346

 2 20160204 Toronto -2.500

 3 20160328 Calgary 7.100

 4 20160413 Ottawa 12.640

 5 20160510 Lynden 17.200

Since neither the data step nor PRINT procedure specified input or output formats, SAS has used default formats.
How did this default behavior affect what SAS did with the weather data?

SAS read the input data and converted them to its internal format. As we discovered in the introduction, the internal
representation will not look anything like the characters in our data. Rather, the value will be stored internally in a
format that allows SAS to easily store and manipulate data efficiently. The PRINT procedure takes the internal
values and produces output using default format specifications. It seems as though SAS did a pretty good job - the
default formatted output generated by the PRINT procedure looks pretty good, with one exception. We lost the fourth
decimal place in Edmonton's January temperature. PRINT defaulted to the best. format and decided that all we

needed was three decimal places. Maybe defaults aren't good enough.

The use of default informats is only possible if the data is what SAS calls " standard numeric or character format." In
other words, while numeric data may contain negative signs and decimal points, it may not contain commas or
currency signs. Character data cannot contain embedded blanks. There's going to be a time when you must input
and report non-standard data. What happens if we allow SAS to default in those cases?

Note the data error in the example below when the default behavior couldn't deal with the special characters in
accum_parking_revenue. From the output created by the PUT statement, we can see that two variables were
created, but accum_parking_revenue contains a missing value.

data parking;

 input city $ accum_parking_revenue ;

 put city= accum_parking_revenue=;

cards;

Edmonton $145,234.72

run;

Log Output:

NOTE: Invalid data for accum_parking_revenue in line 11 10-20.

city=Edmonton accum_parking_revenue=.

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8--

11 Edmonton $145,234.72

city=Edmonton accum_parking_revenue=. _ERROR_=1 _N_=1

NOTE: The data set WORK.PARKING has 1 observations and 2 variables.

SPECIFYING (IN)FORMATS

INFORMATS

Why couldn't we simply read the non-standard numeric accum_parking_revenue data as character data? Doing so

will preserve the currency signs and the commas so it'll still look purty on the way out. But… we cannot use character
data in calculations! If we even suspect that we'll ever need the data for any type of calculation (the correct answer
is YES!!!) , informats must be explicitly specified to properly INPUT the values.

SAS® Formats: Effective and Efficient, continued SESUG 2016

3

data parking;

 input city $ accum_parking_revenue dollar12.2 ;

cards;

Edmonton $145,234.72

Ottawa $221,691.00

Toronto $275,876.54

Lynden $397,112.23

Hamilton $226,432.02

run;

As a bonus, consider the space savings in treating accum_parking_revenue as a number rather than a character: 8

numeric bytes vs. at least 11 bytes in character mode.

Variable Type Len Pos

ƒƒ

2 accum_parking_revenue Num 8 0

1 city Char 8 8

While the following PRINT output displays the same values as the input data, the accum_parking_revenue values

are not formatted as we'd expect for currency data. The informats specified on the INPUT statement ensured SAS
read the data correctly, but nothing we've done so far has resulted in anything other than default output formats.

proc print data=parking;

run;

 accum_

 parking_

Obs city revenue

 1 Edmonton 145234.72

 2 Ottawa 221691.00

 3 Toronto 275876.54

 4 Lynden 397112.23

 5 Hamilton 226432.02

FORMATS

Just as it's possible to explicitly specify informats when reading raw data, temporary or permanent formats can also

be defined to the columns for output. Utilizing the FORMAT statement in the PRINT procedure is an example of a
temporary format assignment.

proc print data=parking;

 format accum_parking_revenue dollar12.2; /* Temporary format */

run;

 accum_

 parking_

Obs city revenue

 1 Edmonton $145,234.72

 2 Ottawa $221,691.00

 3 Toronto $275,876.54

 4 Lynden $397,112.23

 5 Hamilton $226,432.02

PERMANENT (IN)FORMATS

Temporary formats are only in force for the life of the step in which they are defined. For persistent output format
definitions, the format must be stored by SAS in the descriptor portion of the data set. Most often, this is done at
dataset creation time via the (IN)FORMAT or ATTRIB statements. When informats are defined in this manner, it is
not necessary to specify them again on the INPUT statement.

SAS® Formats: Effective and Efficient, continued SESUG 2016

4

data parking;

 attrib date label = 'Accum Date';

 informat accum_parking_revenue dollar12.2;

 format accum_parking_revenue dollar12.2;

 label accum_parking_revenue = 'Accum. Parking Revenue';

 input date city : $12. accum_parking_revenue ;

cards;

20160117 Edmonton $145,234.72

20160204 Edmonton $221,691.00

20160328 Edmonton $375,876.54

20160413 Edmonton $597,112.23

20160510 Edmonton $726,432.02

run;

Notice the much more interesting CONTENTS listing, now showing permanent formats, informats and labels for two
fields:

Variable Type Len Pos Format Informat Label

ƒƒ

1 date Num 8 0 Accum Date

2 accum_parking_revenue Num 8 8 DOLLAR12.2 DOLLAR12.2 Accum. Parking Revenue

3 city Char 12 16

Since permanent output formats have been defined for the accum_parking_revenue column, there' s no need to

use the (temporary) FORMAT statement in the PRINT procedure:

proc print data=parking label;

run;

 Accum.

 Accum Parking

Obs Date Revenue city

 1 20160117 $145,234.72 Edmonton

 2 20160204 $221,691.00 Edmonton

 3 20160328 $375,876.54 Edmonton

 4 20160413 $597,112.23 Edmonton

 5 20160510 $726,432.02 Edmonton

SAS DATE / TIME VALUES

We've talked about converting data values, particularly numeric items, into SAS's internal format, a format more
suited for storage and computation. There's one more very important class of values that must be highlighted: those
relating to date and time.

If we were to take the data from the previous example, and calculate the average parking revenue per day, based on
the date field values, we'd first have to calculate how many days had elapsed between observations. The year,

month and day values could be parsed out of the date value and the appropriate arithmetic gymnastics performed to
subtract the chunks, paying special attention to number of days / month, year rollovers, leap years etc… Of course
there's a better way or it wouldn't be mentioned in a tutorial paper!

SAS has the ability to store dates in a numeric field as the number of elapsed days since January 1, 1960. In other
words, Jan 2, 1960 has a SAS date value of 1, Dec 31, 1960 is 365, Sept 3, 2016 is 20,700. If the appropriate
informats are used on INPUT, SAS will convert our readable date values to a SAS date value. Once our dates are in
SAS date format, the number of days between observations is a simple subtraction between the two date values. In
addition, it allows us to use a plethora of date functions and output formats to effectively process and present date
values.

In an analogous fashion, SAS time formats convert times to the number of seconds since midnight. 1:00 am. is
stored as 3600, 1:30 as 5400, 2:00 as 7200 etc… Again, making time calculations much simpler.

Note the date informat and output format specifications:

SAS® Formats: Effective and Efficient, continued SESUG 2016

5

data parking;

 attrib date informat = yymmdd10. format = mmddyyd10. label = 'Accum Date';

 informat accum_parking_revenue dollar12.2;

 format accum_parking_revenue

 avg_daily_parking_revenue dollar12.2;

 label accum_parking_revenue = 'Accum. Parking Revenue';

 label avg_daily_parking_revenue = 'Avg. Daily Parking Revenue';

 input date city : $12. accum_parking_revenue ;

 avg_daily_parking_revenue =

 (accum_parking_revenue - lag(accum_parking_revenue)) /

 (date - lag(date)) ;

cards;

20160117 Edmonton $145,234.72

20160204 Edmonton $221,691.00

20160328 Edmonton $375,876.54

20160413 Edmonton $597,112.23

20160510 Edmonton $726,432.02

run;

 Accum. Avg. Daily

 Parking Parking

Obs Accum Date Revenue Revenue city

 1 01-17-2016 $145,234.72 . Edmonton

 2 02-04-2016 $221,691.00 $4,247.57 Edmonton

 3 03-28-2016 $375,876.54 $2,909.16 Edmonton

 4 04-13-2016 $597,112.23 $13,827.23 Edmonton

 5 05-10-2016 $726,432.02 $4,789.62 Edmonton

ADDITIONAL WAYS TO SPECIFY (IN)FORMATS

Thus far, we've seen a couple methods of applying input and output formats to our data:

 INPUT / PUT statements temporary

 FORMAT (in data step), INFORMAT, ATTRIB statement permanent

There are occasions when the data will already be in a SAS dataset, in a format not suited for our purposes. Perhaps
a date field has been read and stored in its external format, e.g. 20050912, or numeric data must be presented in a
different format than the permanent format defines. In those cases, it's often necessary to format the data "on the fly"
or create additional variables in the format we require using INPUT and PUT functions.

Consider an observation containing the data below.

data bad_data;

 date = '20160912';

 amt = '$123,456.78';

 time = '08:34';

 postal_code = 'l0r 1t0';

run;

 postal_

Obs date amt time code

 1 20160912 $123,456.78 08:34 l0r 1t0

To convert the existing SAS data, we can use the INPUT function to manipulate the data. The PUT statement

displays both the new informatted values and the new formatted values, specifying formats different than the original
data.

SAS® Formats: Effective and Efficient, continued SESUG 2016

6

data good_data (keep = new:);

 set bad_data;

 new_date = input(date,yymmdd8.);

 new_amt = input(amt,dollar14.2);

 new_time = input(time,time5.);

 new_pc = input(postal_code,$upcase.);

 put new_date @30 new_date yymmdds10. /

 new_amt @30 new_amt dollar13.2 /

 new_time @30 new_time tod12.2 /

 new_pc ;

run;

Unformated: Formatted:

18517 2016/09/12

123456.78 $123,456.78

30840 08:34:00.00

L0R 1T0

INPUT and PUT statements may also be used in PROC SQL sentences to convert / reformat bad_data on the fly:

proc sql;

 select input(date,yymmdd8.) as date format=yymmdds10.

 ,input(amt,comma12.2) as amt format=dollarx12.2

 ,input(time,time5.) as time format=hour4.1

 ,put(upcase(postal_code),$20.-r) as postal_code

 from bad_data

 ;

quit;

date amt time postal_code

ƒƒ

2016/09/12 $123.456,78 8.6 L0R 1T0

ROLL YOUR OWN FORMATS
Often you’ll have very specific data conversion or presentation tasks that cannot be handled by the SAS-supplied
(in)formats. For those cases it is possible to create your own informats and formats using the FORMAT procedure.
User-defined formats perform the same type of operations as SAS-supplied formats, but allow a wider breadth of
functionality due to the custom nature of the formats defined. Three operations are possible:

1. convert numeric values to character values

2. convert character values to numeric values

3. convert character values to other character values

Note that you cannot directly convert a numeric value to another numeric value using SAS or user-defined formats.

PROC FORMAT allows the creation of a number of different styles of informats or formats. It’s possible to hard-code

VALUE and INVALUE definitions, create PICTURE formats, or even create formats from values in a dataset. In
addition, an existing format can be “unloaded” and used to create a dataset of the format specifications.

SIMPLE VALUE STATEMENTS

Where only a few values must be defined, the simplest method is using the VALUE and INVALUE statements.
Remembering the format naming conventions outlined in the INTRODUCTION, the (in)format name must be
specified and value pairs defined for each set of values. Additionally, the (in)format may be defined to a permanent
library or, by default, defined to the WORK library.

For example, you may want to store a status description in place of a single-character status code. SAS beginners
often code this type of conversion with a series of IF / THEN / ELSE or SELECT / WHEN statements:

data policy;

SAS® Formats: Effective and Efficient, continued SESUG 2016

7

 length status_desc $8;

 format issue_date date9.;

 input policy_no issue_date yymmdd10. status_code $;

 select (status_code);

 when ('A') status_desc = 'Active';

 when ('I') status_desc = 'Inactive';

 when ('C') status_desc = 'Closed';

 when ('P') status_desc = 'Pending';

 otherwise;

 end;

cards;
00001 2015-04-05 A

00003 2014-12-28 C

00004 2015-09-11 P

00005 2013-01-17 I

00006 2014-07-09 Z

run;

In SAS-L nomenclature, this is known as “wallpaper” code (virtually identical lines of code forming a pattern). As the
number of values increase, the repetition in the code increases. In addition, this could turn into a maintenance
nightmare, especially if the same conversion was required in multiple programs. Far better to define a format and
utilize the format in every program requiring the conversion. Later we’ll talk about creating permanent formats once,

storing them and accessing them when needed.

proc format ;

 value $status

 'A' = 'Active'

 'I' = 'Inactive'

 'C' = 'Closed'

 'P' = 'Pending' ;

run;

data policy;

 length status_desc $8;

 format issue_date date9.;

 input policy_no issue_date yymmdd10.

 status_code $;

 status_desc = put(status_code,$status.);

cards;

00001 2015-04-05 A

00003 2014-12-28 C

00004 2015-09-11 P

00005 2013-01-17 I

00006 2014-07-09 Z

run;

title 'Policy Data';

proc print data = policy;

 var policy_no issue_date

 status_desc;

run;

PRINT procedure output:

Policy Data

 policy_ issue_ status_

Obs no date desc

 1 00001 05APR2015 Active

 2 00003 28DEC2014 Closed

 3 00004 11SEP2015 Pending

 4 00005 17JAN2013 Inactive

 5 00006 09JUL2014 Z

Note the status description printed for student number 00006. When the input value is not found in the format
specification, the input value is returned. In this case, the status_desc field contained ‘Z’ because the format did not
specify a formatted value for ‘Z’.

VALUE RANGES STATEMENTS

Often, a range of values must be assigned to a single formatted value. In addition, input values not explicitly defined
can be assigned a default, or ‘other’, output value. To convert a character value to a numeric value, the INVALUE
statement is utilized to create an informat, useful in INPUT statements and INPUT functions.

Note that the specified data ranges must not overlap unless using MULTILABEL formats discussed below.

proc format ;

 value grade

 low -<50 = 'F' /* anything less than 50 is an 'F' */

 50 - 59 = 'D'

 60 - 69 = 'C'

 70 - 85 = 'B'

SAS® Formats: Effective and Efficient, continued SESUG 2016

8

 85<-100 = 'A'

 other = 'U' /* any other value returns ‘U’ */

 ;

 invalue subjno (upcase) /*UPCASE specified to make subject case-insensitive*/

 'ALGEBRA' = 1

 'ENGLISH' = 2

 'HISTORY' = 3

 'COMPSCI' = 4

 'GEOGRAPHY' = 5

 'LAW' = 6

 'CALCULUS' = 7

 other = 99 ;

run;

data grade;

 input student_no subject : $12. mark ;

 subject_no = input(subject,subjno.);

cards;

00001 Algebra 98

00001 English 50

00001 History 85

00001 CompSci 102

00003 Law .

00003 Calculus 76

00003 Chemistry 45

run;

title 'Grade Data';

proc print data = grade;

 var student_no subject_no subject mark;

 format student_no z5.

 subject_no z2.

 mark grade.

 ;

run;

The data step uses the INPUT function and the subjno. informat to create a new numeric variable, subject_no.

from the character subject value. The grade. format is employed at print time to convert the numeric grade value

to a letter grade on output.

Grade Data

 student_ subject_

Obs no no subject mark

 1 00001 01 Algebra A

 2 00001 02 English D

 3 00001 03 History B

 4 00001 04 CompSci U

 5 00003 06 Law U

 6 00003 07 Calculus B

 7 00003 99 Chemistry F

The values for student_no 00001 ‘CompSci’ and 00003’s ‘Law’ marks are assigned the ‘other’ value ‘U’ because their
numeric values did not fall within the ranges defined. In the same manner, since ‘Chemistry’ wasn’t specified in the
informat definition, it too received the ‘other’ value of ‘99’.

BUILDING (IN)FORMATS FROM DATA

Using formats in the manner described above approximates the functionality and results of a table “look-up”. It’s
often more efficient to process a table look-up using formats than to sort / merge or join via SQL. And, if your code
values and descriptions are already in a SAS dataset, or in a form that’s easily brought into SAS (e.g. Excel
spreadsheet, text file or RDBMS table you can access via SAS) , there’s no need to use the (IN)VALUE clause with
it’s hard-coded pairs of values. The CNTLIN option allows user-defined formats to be created from a SAS data set.

SAS® Formats: Effective and Efficient, continued SESUG 2016

9

For instance, if the subject name and subject number data from the previous example was stored in a dataset, the
appropriate informat can be created very easily.

CNTLIN datasets must include the following fields:

 fmtname - name of format

 type - type of format, c=character, n=numeric, I=informat

 start - value to be converted

 label - converted value

data subjects;

 length subject $12;

 input subject subject_no;

cards;

ALGEBRA 1

ENGLISH 2

HISTORY 3

COMPSCI 4

LAW 6

CALCULUS 7

run;

data subjno_cntlin (keep = fmtname type start label hlo);

 /* Required fields for CNTLIN processing */

 fmtname = 'subjno'; * format name ;

 type = 'i'; * type = informat ;

 hlo = ' '; * high/low/other blank ;

 /* Read format value pairs from dataset, rename incoming variables as needed */

 do until(eof);

 set subjects (rename = (subject = start subject_no = label))

 end=eof;

 output;

 end;

 /* Handle 'other' */

 hlo = 'o';

 start = ' ';

 label = 99;

 output;

 stop;

run;

proc format cntlin = subjno_cntlin;

run;

Sourcing the (in)format from a dataset (or data source) frees you up from maintenance that would otherwise be
required when values are added, deleted or modified.

Conversely, formats can be “unloaded” to a dataset using the CNTLOUT option. Doing so permits the modification of
the data underlying the user-defined format.

695 proc format cntlout = subject_cntlout;

696 run;

NOTE: The data set WORK.SUBJECT_CNTLOUT has 8 observations and 21 variables.

You will remember that when the subjno. format was created, we only used 5 variables. However the CNTLOUT
operation created a SAS dataset with 21 variables! The label information on the CONTENTS listing provides more
information about the data items that may be specified when creating user-defined formats. See the Online Docs for
additional details.

SAS® Formats: Effective and Efficient, continued SESUG 2016

10

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Label

ƒƒƒ

20 DATATYPE Char 8 101 Date/time/datetime?

18 DECSEP Char 1 99 Decimal separator

 7 DEFAULT Num 3 123 Default length

19 DIG3SEP Char 1 100 Three-digit separator

16 EEXCL Char 1 87 End exclusion

 3 END Char 9 33 Ending value for format

12 FILL Char 1 84 Fill character

 1 FMTNAME Char 8 16 Format name

 9 FUZZ Num 8 0 Fuzz value

17 HLO Char 11 88 Additional information

 4 LABEL Char 40 42 Format value label

21 LANGUAGE Char 8 109 Language for date strings

 8 LENGTH Num 3 126 Format length

 6 MAX Num 3 120 Maximum length

 5 MIN Num 3 117 Minimum length

11 MULT Num 8 8 Multiplier

13 NOEDIT Num 3 129 Is picture string noedit?

10 PREFIX Char 2 82 Prefix characters

15 SEXCL Char 1 86 Start exclusion

 2 START Char 9 24 Starting value for format

14 TYPE Char 1 85 Type of format

PICTURE FORMATS

We’re accustomed to seeing certain data items in familiar formats. For example, phone numbers may be displayed
with the area code enclosed in parenthesis and the exchange separated from the rest of the number with a dash.
The user-defined formats discussed thus far convert data values from one form or value to another. Picture formats
allow us to push numeric values through a template to control its presentation.

Picture formats are comprised of the digits 0 and 9 and special characters such as parenthesis, commas, decimal
points and dashes that will separate the value in resulting output. In the following example we have two numeric
fields, phone number and net worth. We’ve specified two different formats for the phone number depending on the
presence or absence of a leading 1. Net worth is displayed in $millions, but we have to do something special for
those with less than a million dollars.

data clients;

 input name $ phone net_worth;

 label name = 'Name'

 phone = 'Phone Number'

 net_worth = 'Net Worth (Millions)';

cards;

Tom 4162561234 12345678

Dick 5196472472 29490000

Harry 18004558673 155678

George 9999999

run;

proc format ;

 picture phone

 2000000000-9999999999 = '999) 999-9999' (prefix ='(')

 9999999999<-19999999999 = '9-999-999-9999'

 other = 'Invalid';

 picture million (round)

 low-<1000000 = '9.0M' (prefix='$' mult=.00001)

 1000000-high = '0,000.0M' (prefix='$' mult=.00001);

run;

proc print data = clients split=' ';

 format phone phone. net_worth million.;

run;

SAS® Formats: Effective and Efficient, continued SESUG 2016

11

Client Data

 Net

 Phone Worth

Obs Name Number (Millions)

 1 Tom (416) 256-1234 $12.3M

 2 Dick (519) 647-2472 $29.5M

 3 Harry 1-800-455-8673 $0.2M

In addition to the prefix, round, and multiplier options illustrated, picture formats also permits the specification of

thousands separators, decimal separators and fill characters. SAS date, time and datetime data can be displayed in
custom formats as well using a suite of directives to specify the presence / format of the portions of the date / time
value:

data clients;

 input name $ start_date date9.;

 label name = 'Name'

 start_date = 'Start Date';

cards;

Tom 04Jan1984

Dick 27Feb2003

Harry 13Nov1994

George 11Sep2005

run;

proc format ;

 picture annodom

 other = 'Day %d of the month %B, %Y Anno Domini ' (datatype=date);

run;

title 'Client Data';

proc print data = clients split=' ';

 format start_date annodom.;

run;

Client Data

 Start

Obs Name Date

 1 Tom Day 4 of the month January, 1984 Anno Domini

 2 Dick Day 27 of the month February, 2003 Anno Domini

 3 Harry Day 13 of the month November, 1994 Anno Domini

 4 George Day 11 of the month September, 2005 Anno Domini

MULTILABEL FORMATS

Thus far, each example has shown that only one formatted value is generated when the incoming data value is
“pushed” through a format. E.g. in the VALUE RANGES STATEMENT section above, a numeric grade resulted in a
single letter grade - a 75 will always and only generate a “B” letter grade. However, at times it’s very useful to have a
single data item result in multiple formatted values. Think of financial reporting where a transaction occurring on Feb
10 must be reported in multiple totals: weekly, February month-end, first quarter and annual summary points. Or,
instances when sub-category totals must be rolled up into parent categories.

In the example below, each credit card type must be summarized independently and totals also generated for the top-
level card issuer.

/* Test data */

data amts;

 do card_type = 'VG','VD','MG','MP';

 do _i = 1 to ceil(ranuni(1)*10);

 amt = ranuni(2)*1000;

 output;

SAS® Formats: Effective and Efficient, continued SESUG 2016

12

 end;

 end;

run;

/* Create multilabel format, notsorted so summary appears in format order */

proc format ;

 value $cardtyp (multilabel notsorted)

 'VG' = 'Visa Gold'

 'VD' = 'Visa Dividend'

 'MG' = 'Mastercard Gold'

 'MP' = 'Mastercard Platinum'

 'VA'-'VZ' = 'Visa'

 'MA'-'MZ' = 'Mastercard' ;

run;

/* Summarize */

proc means data = amts sum;

 format card_type $cardtyp.;

 class card_type /mlf order=data preloadfmt;

 var amt ;

run;

The color-coded output below shows how the Visa card results have been summarized independently and also into a
Visa total line, similarly for Mastercard. One pass through the data, multiple summary lines generated – efficiency!

 N

card_type Obs Sum

--

Visa Gold 2 1369.91

Visa Dividend 3 2433.86

Mastercard Gold 6 2380.13

Mastercard Platinum 10 4885.58

Visa 5 3803.77

Mastercard 16 7265.71

The advantages of multilabel formats can be realized with only specific SAS procedures: MEANS, SUMMARY,
TABULATE and REPORT when the /MLF option is specified on the CLASS statement. If multilabel formats are used
with other SAS procedures (or the /MLF option is omitted), only the first format defined for each value will be used,
e.g. ‘VG’ will appear as ‘Visa Gold’, not ‘Visa’ since ‘VG’ was specified before ‘VA’-‘VZ’ in PROC FORMAT.

NESTED FORMATS

Sometimes the user-defined format is only required for a specified set of values. Rather than conditioning the
application of formats by checking values of the incoming data, nested formats can be utilized. In this example,
values less than a million are to be displayed using the COMMA. format, values in the millions are to display
‘Millions’, billions to display ‘Billions’, and anything higher displayed in exponential format.

proc format ;

 value largeno

 low-<1000000 = [comma7.]

 1000000-<1000000000 = 'Millions'

 1000000000-<1000000000000 = 'Billions'

 1000000000000-high = [e13.2];

run;

data numbers;

 num = 123456; output;

 num = 2345678; output;

proc print data=numbers;

 format num largeno.;

run;

Nested formats

Obs num

 1 123,456

 2 Millions

SAS® Formats: Effective and Efficient, continued SESUG 2016

13

 num = 3456789012; output;

 num = 4567890123456; output;

run;

 3 Billions

 4 4.567890E+12

CREATING AND ACCESSING PERMANENT USER-DEFINED FORMATS

Often you’ll want to create and permanently store user-defined formats. To do so, it’s a matter of specifying the LIB=
option on the PROC FORMAT statement.

libname mydata 'C:_Stratia\Presentations\sesug_2016\data';

libname temp 'C:\temp';

proc format lib=temp;

 value largeno

 low-<1000000 = [comma7.]

 1000000-<1000000000 = 'Millions'

 1000000000-<1000000000000 = 'Billions'

 1000000000000-high = [e13.2];

run;

data mydata.numbers;

 format num largeno.; /* Format permanently assigned to variable */

 num = 123456; output;

 num = 2345678; output;

 num = 3456789012; output;

 num = 4567890123456; output;

run;

proc print data=mydata.numbers; /* Format permanently assigned to num */

run; /* so not specified in PRINT */

However, you’re not done yet, defining the library isn’t enough to access permanent formats, you must tell SAS

where to find them. By default, SAS automatically checks the WORK library and, if it exists, a libref of LIBRARY.
Since our format was created in TEMP, running the PROC PRINT in the example will error because the largeno.

format, permanently assigned to the NUM variable in the NUMBERS dataset could not be found in WORK or
LIBRARY:

561 proc print data=mydata.numbers;

ERROR: The format LARGENO was not found or could not be loaded.

562 run;

To add TEMP to the format search path, the FMTSEARCH option must be correctly set.

options fmtsearch = (temp work);

Now, when a non-SAS-supplied format is encountered in the PRINT procedure, the FORMATS catalogs in TEMP
and WORK are successfully searched for the largeno. format.

POTENTIAL PITFALLS WITH FORMATS

It’s not easy to have problems with formats, but there are a few gotchas to watch for.

MISSING FORMATS CATALOG

In the previous example, the largeno. format was permanently defined to the NUM variable in the

MYDATA.NUMBERS dataset via the FORMATS statement in the data step. The format catalog was stored in the
TEMP library, defined to C:\temp. Unfortunately, an overly exuberant hard-drive clean-up emptied the C:\temp
directory, deleting the formats catalog containing largeno. When an attempt is made to PRINT the dataset, the error

we received before issuing the FMTSEARCH options was again generated:

ERROR: The format LARGENO was not found or could not be loaded.

However because the FORMATS catalog has disappeared, it’s no longer as simple as specifying the correct
FMTSEARCH option to tell SAS where to find the format. It’s not even possible to copy the NUMBERS data to a new

SAS® Formats: Effective and Efficient, continued SESUG 2016

14

data set:

700 data new;

701 set mydata.numbers;

702 run;

ERROR: The format LARGENO was not found or could not be loaded.

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set WORK.NEW may be incomplete. When this step was stopped there were 0

 observations and 1 variables.

By default, SAS errors and refuses to proceed if a format error is detected. However the nofmterr option is available

to allow the step to continue when format errors are encountered.

options nofmterr;

Let's see what the log produced now that we've specified nofmterr.

704 options nofmterr;

705 title 'Largeno. AFTER Delete';

706 proc print data=numbers;

707 run;

NOTE: There were 4 observations read from the data set WORK.NUMBERS.

NOTE: At least one W.D format was too small for the number to be printed. The decimal may be

 shifted by the "BEST" format.

Largeno. AFTER Delete

Obs num

 1 123456

 2 2345678

 3 3456789012

 4 4.5678901E12

While SAS found that the default BEST. format was inadequate for the data values, the dataset was processed
despite the missing largeno. format.

INCORRECT FORMAT WIDTH

Way back in the introduction, when we were talking about the components of a format, we found out that the number
before the period was the total allowed width. For example, the format dollar12.2 allows 12 positions for everything,

dollar sign, digits, commas, decimal point and, if we're talking the balances in government books, a negative sign.

balance = -1234567.89;

put balance dollar10.2;

214 balance = -1234567.89;

215 put balance dollar10.2;

-1234567.9

NOTE: At least one W.D format was too small for the number to be printed. The decimal may be

 shifted by the "BEST" format.

SAS has done the math and concluded you can't put 10lbs of stuff in a 5lb bag. Rather than ensuring balance was
displayed replete with dollar signs and commas but missing significant digits, SAS defaulted to the best. format and

pumped out as many significant digits as it could into the allotted 10 bytes.

Sometimes, despite SAS's best. efforts, there just isn't room. In those cases a string of asterisks is output along with

the " ain't gonna fit " log message. You've seen this same type of behavior in Microsoft Excel which displays # signs
when the cell width is not adequate to contain the value in it.

SAS® Formats: Effective and Efficient, continued SESUG 2016

15

widgets = 123;

put widgets z2.;

218 data _null_;

219 widgets = 123;

220 put widgets z2.;

221 run;

**

NOTE: At least one W.D format was too small for the number to be

printed. The decimal may be shifted by the "BEST" format.

INFORMAT WITH DECIMALS

Many of the numbers we deal with are not integers. The fact that we have to account for decimals leaves us open to
another pitfall. Consider the following data step where different amounts with varying precision are read. We've
specified an informat with a maximum length of 7 (including decimal point) and two decimal digits.

data all_amts;

 format amt 7.2;

 input amt 7.2;

cards;

123.45

3.7

567.88787

67

11.

 run;

Obs amt

 1 123.45

 2 3.70

 3 567.89

 4 0.67

 5 11.00

From the PRINT output, we can see that our disparate data has been handled quite nicely for the most part. It is
readily apparent that SAS took the decimal point supplied in the input data at face value and truncated or added
zeroes to flesh out the 7.2 format. But, there's a problem with 67. Note that this line of input data did not contain a
decimal point. When using a W.D numeric informat, SAS divides the input data by 10

D
 (10 ** D) unless the input

data contains a decimal point. Be consistent or your data values may end up smaller by magnitudes!

EASY LIVING VIA FORMATS

We’ve already seen some benefits of user-defined formats, custom formatting, data conversion and table lookup
operations, but there’s more. There’s other gains to be realized, formats can also deliver us from some of the
drudgery in our SAS life. Let's look at a few time savers available via the means of formats.

JUSTIFICATION

Typically, character data are left-justified, numeric data right-justified. There's times when you might want to left-
justify a numeric value. Perhaps you're ticked at the chief accountant, so why not left-justify all the columns of
numbers on that daily journal entry report? A more realistic application, creating labels for report lines. Note how the
line value of 9 is snuggled up to the hyphen when the -L format modifier is added:

data _null_;

 do line = 9 to 10;

 left = 'Line-' || put(line,2.-L);

 right = 'Line-' || put(line,2.);

 put @2 left= / right=;

 end;

run;

Log Output:

 left=Line-9

right=Line- 9

 left=Line-10

right=Line-10

RETENTION OF LEADING ZEROES

In most numeric data, the high-order, leading zeroes are not required on output. If we have an amount field with
values ranging from 4 to 2000, we wouldn't want the lower values to be displayed with leading zeroes, e.g. 0004.
However, there are times when leading zeroes are important. Consider part numbers, invoice and cheque numbers
and the like:

a = 4;

put a @10 a z4.;
Log Output:

4 0004

SAS® Formats: Effective and Efficient, continued SESUG 2016

16

PRESERVATION OF LEADING SPACES

By default, SAS ignores leading spaces. Well, worse than that, it'll get rid of them if it can. If leading spaces are
important, you must explicitly tell SAS to keep 'em via the $CHAR. informat at INPUT time:

data a;

 input @1 fruit1 $10. @11 where1 $10.

 @1 fruit2 $char10. @11 where2 $char10.; /* Read line again */

cards;

12345678901234567890

 Apple Orchard

 Orange Grove

 Grape Store

run;

Note the fruit2 and where2 retained the leading spaces while fruit1 and where1 are left-justified:

Obs fruit1 where1 fruit2 where2

 1 1234567890 1234567890 1234567890 1234567890

 2 Apple Orchard Apple Orchard

 3 Orange Grove Orange Grove

 4 Grape Store Grape Store

SUMMARIZE DETAIL USING FORMATTED VALUES

Base SAS comes with many useful procedures designed to make common computing tasks more efficient; more
efficient both in terms of coding and processing effort. As a rule, if SAS has provided a procedure to deal with a data
manipulation task, it really ought to be used over a home-grown solution. For example, the TABULATE procedure
displays descriptive statistics (e.g. mean, sum) in tabular format with very little coding effort. Consider a small data
set containing sales figures by date:

(Note: date field literals defined with the ‘date value’d syntax are automatically converted to internal SAS date

values. ie. the DO loop iterates from 15706 to 16070, the internal values for 10Jan2003 and 31Dec2003).

data analysis ;

 format date yymmddd10.

 sales dollar12.2;

 do date = '01jan2003'd to '31dec2003'd by 11;

 sales = ranuni(1) * 20000;

 output;

 end;

run;

The date field is stored in internal SAS format so the benefit of SAS date formats can be brought to bear on the field.
The simplest way to summarize the sales figures by month and quarter is using the simple TABULATEs below. Note
that no pre-processing of the data was required and the only differences between the TABULATE steps is the
FORMAT specified for the date variable.

proc tabulate data=analysis;

 class date;

 var sales ;

 table date='Month /

Year',sales='Sales' * sum=' '

*f=dollar12.2;

 format date monyy5.;

run;

Note that the monyy5. format has been applied to

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†

‚ ‚ Sales ‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚Month / Year ‚ ‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚

‚JAN03 ‚ $31,097.51‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚FEB03 ‚ $43,005.57‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚MAR03 ‚ $22,489.30‚

SAS® Formats: Effective and Efficient, continued SESUG 2016

17

the date field, thus summarizing the data by month
and year.

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

etc…

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚OCT03 ‚ $41,397.52‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚NOV03 ‚ $33,759.13‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚DEC03 ‚ $47,338.74‚

Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

proc tabulate data=analysis;

 class date;

 var sales ;

 table date='Quarter',sales='Sales' *

sum=' ' *f=dollar12.2;

 format date yyq6.;

run;

Note that the yyq6. format has been applied to the
date field, thus summarizing the sales data by year
and quarter. Same dataset, same field, same data,
but different results via simply altering the format
specification.

An exercise for the reader - how could the monthly
and quarterly summaries have been performed at
the same time using MULTILABEL formats?

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†

‚ ‚ Sales ‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚Quarter ‚ ‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚

‚2003Q1 ‚ $96,592.38‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚2003Q2 ‚ $77,143.28‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚2003Q3 ‚ $86,315.43‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

‚2003Q4 ‚ $122,495.39‚

 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

$CONCLUSION.
Sometimes it seems as though our working life consists of nothing but data, mountains of it. SAS is our favorite tool
for scaling that mountain, reading and massaging data, dicing, summarizing, storing and finally presenting it again in
a meaningful manner. Informats and formats, both SAS supplied and user-defined, are indispensable in all these
activities.

REFERENCES
http://www2.sas.com/proceedings/sugi29/236-29.pdf - Building and Using User Defined Formats,

Arthur Carpenter, SUGI 29 236-29.

http://www.kcasug.org/wp-content/uploads/2010/03/SAS_Formats_Beyond_the_Basics-Andrew-Karp-Q2-2008.pdf -
SAS Formats: Beyond the Basics, Andrew Karp, 2008-01-31.

SAS-L, many posts over many years. http://listserv.uga.edu/archives/sas-l.html

SAS Online Docs, SAS Institute, Cary, NC

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Harry Droogendyk

Stratia Consulting Inc.

PO Box 145,

http://www2.sas.com/proceedings/sugi29/236-29.pdf
http://www.kcasug.org/wp-content/uploads/2010/03/SAS_Formats_Beyond_the_Basics-Andrew-Karp-Q2-2008.pdf
http://listserv.uga.edu/archives/sas-l.html

SAS® Formats: Effective and Efficient, continued SESUG 2016

18

Lynden, ON, L0R 1T0

519-647-2472

conf@stratia.ca

www.stratia.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:conf@stratia.ca
http://www.stratia.ca/

