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ABSTRACT  

SAS® formats, whether they be the vanilla variety supplied with the SAS system, or fancy ones you create yourself, 
will increase your coding and program efficiency.  (In)Formats can be used effectively for data conversion, data 
presentation and data summarization, resulting in efficient, data-driven code that's less work to maintain.  Creation 
and use of user-defined formats, including picture formats, are included in this paper. 

INTRODUCTION 

If you've been in the programming business for any length of time, you're well aware that your data is not necessarily 
stored as you enter it or as it is displayed when presented for your viewing.  For example, open up an editor on your 
ASCII machine and type the word SESUG in the first record and save the file.  If we display the file in hexadecimal 
representation, we do not see 'SESUG', rather, the five bytes appear as ‘53 45 53 55 47’.  However, the hexadecimal 
representation is really only a more readable form of the binary format a computer ultimately stores and uses.    How 
does an ASCII machine store the word SESUG?  Each of the five bytes contains eight bits, a total of 40 bits, 
0101001101000101010100110101010101000111 .  That's just plain ugly! 

 

Without getting too technical, matters become more complicated when we consider numbers, especially those stored 
in a SAS dataset.  To enable SAS to store numbers of large magnitude and perform calculations that require many 
digits of precision to the right of the decimal point, SAS stores all numbers using floating-point  representation.  You 
may know this format as scientific notation.  Values are represented as numbers between 0 and 1 times a power of 

10.  e.g. the number 1 in scientific notation is .1 x 10
1 

 

We can look at this and do the math and come up with an answer of 1.  But, just to confuse the matter even further, 
SAS stores numbers in scientific notation, not in base 10 ( like we humans count ), but in base 2.  In hexadecimal 
format the numeral 1 appears as 3F F0 00 00 00 00 00 00.  Certainly doesn't look like 1 to me!  Ahhh, aren't you glad 
you don't have to work with the internals? 

 

It's evident that something happens to our data after we enter it, something else before it's displayed to us.  The stuff 

we can easily read is modified by SAS to a format it can understand, massage and store.  In order to make the data 
meaningful to us, SAS must re-format the data for our reading pleasure when pumping it back out.  Thankfully we're 
not limited to SAS's idea of how things ought to be - we can use informats and formats to direct SAS how to input and 

display our data.   

 

This paper will introduce you to SAS-supplied and user-defined formats and informats and how to use them to 

effectively and efficiently deal with data conversion and presentation tasks. 

 

Let's begin with some definitions and examples.  An informat is an instruction used to read data values into a SAS 

variable.  In addition, if a variable has not yet been defined, SAS uses the informat to determine whether the variable 
ought to be numeric or character.  The informat is also used to determine the length of character variables.    A 
format is defined as an instruction that SAS uses to write data values. Formats are used to control the written 
appearance of data values.   Both informats and formats are of the form:  <$> name <w> . <d> 

 

 $    required prefix for character (in)formats 

 format   up to 7 characters long for character, 8 for numeric, may not end in a number! 

v9 format names may be 31 / 32 characters long 

 w    width of value to be read / written, includes commas, decimal places, dollar signs etc… 

 .    a period, every format must have a period, distinguishes formats from variable names 

 d    decimal places, optional, only for numeric (in)formats 

 

For example:    $char20.     - 20 byte character format 

      dollar12.2    - 12 byte numeric format, with 2 decimal places 
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HAVE YOU EVER USED FORMATS OR INFORMATS? 
"Are you kidding?!", you say, "I haven't been using SAS that long, formats are confusing!".  Well, I can say with 
certainty you have used formats, even if SAS was doing it behind the scenes on your behalf.  Consider the following 
simple data step and PRINT procedure: 

 
data weather; 

  input date city $ degrees_celsius ; 

cards; 

20160117 Edmonton  -134.3456 

20160204 Toronto     -2.5 

20160328 Calgary      7.1 

20160413 Ottawa      12.64 

20160510 Lynden      17.2 

run; 

 

proc print data=weather; 

run; 

 

                               degrees_ 

Obs      date        city       celsius 

 

 1     20160117    Edmonton    -134.346 

 2     20160204    Toronto       -2.500 

 3     20160328    Calgary        7.100 

 4     20160413    Ottawa        12.640 

 5     20160510    Lynden        17.200 

 

Since neither the data step nor PRINT procedure specified input or output formats, SAS has used default formats. 
How did this default behavior affect what SAS did with the weather data?   

 

SAS read the input data and converted them to its internal format.   As we discovered in the introduction, the internal 
representation will not look anything like the characters in our data.  Rather, the value will be stored internally in a 
format that allows SAS to easily store and manipulate data efficiently.   The PRINT procedure takes the internal 
values and produces output using default format specifications.  It seems as though SAS did a pretty good job - the 
default formatted output generated by the PRINT procedure looks pretty good, with one exception.  We lost the fourth 
decimal place in Edmonton's January temperature.  PRINT defaulted to the best. format and decided that all we 

needed was three decimal places.  Maybe defaults aren't good enough. 

 

The use of default informats is only possible if the data is what SAS calls " standard numeric or character format."  In 
other words, while numeric data may contain negative signs and decimal points, it may not contain commas or 
currency signs.  Character data cannot contain embedded blanks.  There's going to be a time when you must input 
and report non-standard data.  What happens if we allow SAS to default in those cases?   

 

Note the data error in the example below when the default behavior couldn't deal with the special characters in 
accum_parking_revenue.  From the output created by the PUT statement, we can see that two  variables were 
created, but accum_parking_revenue contains a missing value. 

 

data parking; 

  input city $ accum_parking_revenue ; 

  put city= accum_parking_revenue=; 

cards; 

Edmonton $145,234.72 

run; 

 

Log Output: 
 

NOTE: Invalid data for accum_parking_revenue in line 11 10-20. 

city=Edmonton accum_parking_revenue=. 

RULE:      ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8-- 

11         Edmonton $145,234.72 

city=Edmonton accum_parking_revenue=. _ERROR_=1 _N_=1 

NOTE: The data set WORK.PARKING has 1 observations and 2 variables. 

SPECIFYING (IN)FORMATS 

INFORMATS 

Why couldn't we simply read the non-standard numeric accum_parking_revenue data as character data?  Doing so 

will preserve the currency signs and the commas so it'll still look purty on the way out.  But… we cannot use character 
data in calculations!  If we even suspect that we'll ever need the data for any type of calculation ( the correct answer 
is YES!!! ) , informats must be explicitly specified to properly INPUT the values.  
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data parking; 

  input city $ accum_parking_revenue dollar12.2 ; 

cards; 

Edmonton $145,234.72 

Ottawa $221,691.00 

Toronto $275,876.54 

Lynden $397,112.23 

Hamilton $226,432.02 

run; 

 

As a bonus, consider the space savings in treating accum_parking_revenue as a number rather than a character: 8 

numeric bytes vs. at least 11 bytes in character mode. 

 
##    Variable                 Type    Len    Pos 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

2    accum_parking_revenue    Num       8      0 

1    city                     Char      8      8 

 

While the following PRINT output displays the same values as the input data, the accum_parking_revenue values 

are not formatted as we'd expect for currency data.  The informats specified on the INPUT statement ensured SAS 
read the data correctly, but nothing we've done so far has resulted in anything other than default output formats. 

 
proc print data=parking; 

run; 

                      accum_ 

                    parking_ 

Obs      city       revenue 

 

 1     Edmonton    145234.72 

 2     Ottawa      221691.00 

 3     Toronto     275876.54 

 4     Lynden      397112.23 

 5     Hamilton    226432.02 

 

FORMATS 

Just as it's possible to explicitly specify informats when reading raw data, temporary or permanent formats can also 

be defined to the columns for output.  Utilizing the FORMAT statement in the PRINT procedure is an example of a 
temporary format assignment. 
 

proc print data=parking; 

  format accum_parking_revenue dollar12.2; /*  Temporary format  */ 

run; 

 

                         accum_ 

                       parking_ 

Obs      city           revenue 

 

 1     Edmonton     $145,234.72 

 2     Ottawa       $221,691.00 

 3     Toronto      $275,876.54 

 4     Lynden       $397,112.23 

 5     Hamilton     $226,432.02 

 

PERMANENT (IN)FORMATS 

Temporary formats are only in force for the life of the step in which they are defined.  For persistent output format 
definitions, the format must be stored by SAS in the descriptor portion of the data set.  Most often, this is done at 
dataset creation time via the (IN)FORMAT or ATTRIB statements.  When informats are defined in this manner, it is 
not necessary to specify them again on the INPUT statement. 
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data parking; 

  attrib   date label = 'Accum Date'; 

  informat accum_parking_revenue dollar12.2; 

  format   accum_parking_revenue dollar12.2; 

  label    accum_parking_revenue = 'Accum. Parking Revenue'; 

  input date city : $12.  accum_parking_revenue ; 

cards; 

20160117 Edmonton   $145,234.72 

20160204 Edmonton   $221,691.00 

20160328 Edmonton   $375,876.54 

20160413 Edmonton   $597,112.23 

20160510 Edmonton   $726,432.02 

run; 

 

Notice the much more interesting CONTENTS listing, now showing permanent formats, informats and labels for two 
fields: 

 
#   Variable                Type   Len  Pos  Format       Informat     Label 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

1   date                    Num      8    0                            Accum Date 

2   accum_parking_revenue   Num      8    8  DOLLAR12.2   DOLLAR12.2   Accum. Parking Revenue 

3   city                    Char    12   16 

Since permanent output formats have been defined for the accum_parking_revenue column, there' s no need to 

use the ( temporary ) FORMAT statement in the PRINT procedure: 
 

proc print data=parking label; 

run; 

                         Accum. 

         Accum          Parking 

Obs      Date           Revenue       city 

 

 1     20160117     $145,234.72    Edmonton 

 2     20160204     $221,691.00    Edmonton 

 3     20160328     $375,876.54    Edmonton 

 4     20160413     $597,112.23    Edmonton 

 5     20160510     $726,432.02    Edmonton 

 

SAS DATE / TIME VALUES 

We've talked about converting data values, particularly numeric items, into SAS's internal format, a format more 
suited for storage and computation.  There's one more very important class of values that must be highlighted: those 
relating to date and time.  

 

If we were to take the data from the previous example, and calculate the average parking revenue per day, based on 
the date field values, we'd first have to calculate how many days had elapsed between observations.  The year, 

month and day values could be parsed out of the date value and the appropriate arithmetic gymnastics performed to 
subtract the chunks, paying special attention to number of days / month, year rollovers, leap years etc…  Of course 
there's a better way or it wouldn't be mentioned in a tutorial paper! 

 

SAS has the ability to store dates in a numeric field as the number of elapsed days since January 1, 1960.  In other 
words, Jan 2, 1960 has a SAS date value of 1, Dec 31, 1960 is 365, Sept 3, 2016 is 20,700.   If the appropriate 
informats are used on INPUT, SAS will convert our readable date values to a SAS date value.   Once our dates are in 
SAS date format, the number of days between observations is a simple subtraction between the two date values.  In 
addition, it allows us to use a plethora of date functions and output formats to effectively process and present date 
values. 

 

In an analogous fashion, SAS time formats convert times to the number of seconds since midnight.  1:00 am. is 
stored as 3600, 1:30 as 5400, 2:00 as 7200 etc…  Again, making time calculations much simpler.  

 

Note the date informat and output format specifications: 
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data parking; 

  attrib   date informat = yymmdd10. format = mmddyyd10. label = 'Accum Date'; 

  informat accum_parking_revenue     dollar12.2; 

  format   accum_parking_revenue  

           avg_daily_parking_revenue dollar12.2; 

  label    accum_parking_revenue     = 'Accum. Parking Revenue'; 

  label    avg_daily_parking_revenue = 'Avg. Daily Parking Revenue'; 

  input date city : $12. accum_parking_revenue ; 

 

 avg_daily_parking_revenue =  

     ( accum_parking_revenue - lag(accum_parking_revenue)) / 

     ( date - lag(date)) ; 

 

cards; 

20160117 Edmonton $145,234.72 

20160204 Edmonton $221,691.00 

20160328 Edmonton $375,876.54 

20160413 Edmonton $597,112.23 

20160510 Edmonton $726,432.02 

run; 

  
                           Accum.      Avg. Daily 

                          Parking         Parking 

Obs    Accum Date         Revenue         Revenue      city 

 

 1     01-17-2016     $145,234.72             .      Edmonton 

 2     02-04-2016     $221,691.00       $4,247.57    Edmonton 

 3     03-28-2016     $375,876.54       $2,909.16    Edmonton 

 4     04-13-2016     $597,112.23      $13,827.23    Edmonton 

 5     05-10-2016     $726,432.02       $4,789.62    Edmonton 

 

ADDITIONAL WAYS TO SPECIFY (IN)FORMATS 

Thus far, we've seen a couple methods of applying input and output formats to our data: 

 INPUT / PUT statements         temporary  

 FORMAT ( in data step ), INFORMAT, ATTRIB statement  permanent  

 

There are occasions when the data will already be in a SAS dataset, in a format not suited for our purposes.  Perhaps 
a date field has been read and stored in its external format, e.g. 20050912, or numeric data must be presented in a 
different format than the permanent format defines.  In those cases, it's often necessary to format the data "on the fly" 
or create additional variables in the format we require using INPUT and PUT functions.   

 

Consider an observation containing the data below. 

 

data bad_data; 

   date        = '20160912'; 

   amt         = '$123,456.78'; 

   time        = '08:34'; 

   postal_code = 'l0r 1t0'; 

run; 

 

                                           postal_ 

Obs      date          amt        time      code 

 

 1     20160912    $123,456.78    08:34    l0r 1t0 

 

To convert the existing SAS data, we can use the INPUT function to manipulate the data.  The PUT statement  

displays both the new informatted values and the new formatted values, specifying formats different than the original 
data. 



SAS® Formats: Effective and Efficient, continued  SESUG 2016 

6 

 

data good_data ( keep = new: ); 

  set bad_data; 

  new_date = input(date,yymmdd8.); 

  new_amt  = input(amt,dollar14.2); 

  new_time = input(time,time5.); 

  new_pc   = input(postal_code,$upcase.); 

   

  put new_date  @30 new_date yymmdds10.  /    

      new_amt   @30 new_amt  dollar13.2  / 

      new_time  @30 new_time tod12.2 / 

      new_pc ; 

run; 

 

Unformated:      Formatted:  

18517                         2016/09/12 

123456.78                      $123,456.78 

30840                         08:34:00.00 

L0R 1T0 

 

INPUT and PUT statements may also be used in PROC SQL sentences to convert / reformat bad_data on the fly: 

 

proc sql; 

  select input(date,yymmdd8.)              as date format=yymmdds10.  

        ,input(amt,comma12.2)              as amt  format=dollarx12.2 

        ,input(time,time5.)                as time format=hour4.1 

        ,put(upcase(postal_code),$20.-r)   as postal_code 

    from bad_data 

  ; 

quit; 

 
date           amt        time  postal_code 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

2016/09/12   $123.456,78   8.6               L0R 1T0 

ROLL YOUR OWN FORMATS 
Often you’ll have very specific data conversion or presentation tasks that cannot be handled by the SAS-supplied 
(in)formats.  For those cases it is possible to create your own informats and formats using the FORMAT procedure.  
User-defined formats perform the same type of operations as SAS-supplied formats, but allow a wider breadth of 
functionality due to the custom nature of the formats defined.  Three operations are possible: 

1. convert numeric values to character values 

2. convert character values to numeric values 

3. convert character values to other character values 

 

Note that you cannot directly convert a numeric value to another numeric value using SAS or user-defined formats. 

 

PROC FORMAT allows the creation of a number of different styles of informats or formats.  It’s possible to hard-code 

VALUE and INVALUE definitions, create PICTURE formats, or even create formats from values in a dataset.  In 
addition, an existing format can be “unloaded” and used to create a dataset of the format specifications. 

 

SIMPLE VALUE STATEMENTS 

Where only a few values must be defined, the simplest method is using the VALUE and INVALUE statements.  
Remembering the format naming conventions outlined in the INTRODUCTION, the (in)format name must be 
specified and value pairs defined for each set of values.  Additionally, the (in)format may be defined to a permanent 
library or, by default, defined to the WORK library. 

 

For example, you may want to store a status description in place of a single-character status code.  SAS beginners 
often code this type of conversion with a series of IF / THEN / ELSE or SELECT / WHEN statements: 
 

data policy; 



SAS® Formats: Effective and Efficient, continued  SESUG 2016 

7 

   length status_desc $8; 

   format issue_date date9.; 

   input policy_no issue_date yymmdd10. status_code $; 

 

   select (status_code); 

     when ('A')  status_desc = 'Active'; 

   when ('I')  status_desc = 'Inactive'; 

   when ('C')  status_desc = 'Closed'; 

   when ('P')  status_desc = 'Pending'; 

   otherwise; 

   end; 

cards; 
00001 2015-04-05 A 

00003 2014-12-28 C 

00004 2015-09-11 P 

00005 2013-01-17 I 

00006 2014-07-09 Z 

run; 

 

In SAS-L nomenclature, this is known as “wallpaper” code ( virtually identical lines of code forming a pattern ).  As the 
number of values increase, the repetition in the code increases.  In addition, this could turn into a maintenance 
nightmare, especially if the same conversion was required in multiple programs.  Far better to define a format and 
utilize the format in every program requiring the conversion.  Later we’ll talk about creating permanent formats once, 

storing them and accessing them when needed. 
 

proc format ; 

  value $status 

 'A' = 'Active' 

   'I' = 'Inactive' 

 'C' = 'Closed' 

 'P' = 'Pending' ; 

run; 

 

data policy; 

   length status_desc $8; 

   format issue_date date9.; 

   input policy_no issue_date yymmdd10.  

         status_code $; 

   status_desc = put(status_code,$status.); 

cards; 

00001 2015-04-05 A 

00003 2014-12-28 C 

00004 2015-09-11 P 

00005 2013-01-17 I 

00006 2014-07-09 Z 

run; 

title 'Policy Data'; 

proc print data = policy; 

  var policy_no issue_date  

      status_desc; 

run; 

 

PRINT procedure output: 

 
Policy Data            

 

       policy_       issue_    status_ 

Obs      no            date    desc 

 

 1      00001     05APR2015    Active 

 2      00003     28DEC2014    Closed 

 3      00004     11SEP2015    Pending 

 4      00005     17JAN2013    Inactive 

 5      00006     09JUL2014    Z 

 

  

 

Note the status description printed for student number 00006.   When the input value is not found in the format 
specification, the input value is returned.  In this case, the status_desc field contained ‘Z’ because the format did not 
specify a formatted value for ‘Z’.   

 

VALUE RANGES STATEMENTS 

Often, a range of values must be assigned to a single formatted value.  In addition, input values not explicitly defined 
can be assigned a default, or ‘other’, output value.  To convert a character value to a numeric value, the INVALUE 
statement is utilized to create an informat, useful in INPUT statements and INPUT functions.   

 

Note that the specified data ranges must not overlap unless using MULTILABEL formats discussed below. 
 

proc format ; 

  value grade 

 low -<50 = 'F' /* anything less than 50 is an 'F' */ 

 50 - 59  = 'D' 

 60 - 69  = 'C' 

 70 - 85  = 'B' 
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 85<-100  = 'A' 

 other    = 'U'  /* any other value returns ‘U’ */ 

  ; 

 

  invalue subjno (upcase)  /*UPCASE specified to make subject case-insensitive*/ 

   'ALGEBRA'   = 1 

 'ENGLISH'   = 2 

 'HISTORY'   = 3 

 'COMPSCI'   = 4 

 'GEOGRAPHY' = 5 

 'LAW'    = 6 

 'CALCULUS'  = 7 

  other    = 99 ; 

run; 

 

data grade; 

   input student_no subject : $12. mark  ; 

   subject_no = input(subject,subjno.); 

cards; 

00001 Algebra 98 

00001 English 50 

00001 History 85 

00001 CompSci 102 

00003 Law . 

00003 Calculus 76 

00003 Chemistry 45 

run; 

 

title 'Grade Data'; 

proc print data = grade; 

  var student_no subject_no subject mark; 

  format  student_no z5. 

       subject_no z2. 

      mark grade. 

   ; 

run; 

 

The data step uses the INPUT function and the subjno. informat to create a new numeric variable, subject_no. 

from the character subject value.  The grade. format is employed at print time to convert the numeric grade value 

to a letter grade on output.   

 
Grade Data 

       student_    subject_ 

Obs       no          no       subject      mark 

 

 1      00001         01       Algebra       A 

 2      00001         02       English       D 

 3      00001         03       History       B 

 4      00001         04       CompSci       U 

 5      00003         06       Law           U 

 6      00003         07       Calculus      B 

 7      00003         99       Chemistry     F 

 

The values for student_no 00001 ‘CompSci’ and 00003’s ‘Law’ marks are assigned the ‘other’ value ‘U’ because their 
numeric values did not fall within the ranges defined.  In the same manner, since ‘Chemistry’ wasn’t specified in the 
informat definition, it too received the ‘other’ value of ‘99’. 

 

BUILDING (IN)FORMATS FROM DATA 

Using formats in the manner described above approximates the functionality and results of a table “look-up”.  It’s 
often more efficient to process a table look-up using formats than to sort / merge or join via SQL.  And, if your code 
values and descriptions are already in a SAS dataset, or in a form that’s easily brought into SAS ( e.g. Excel 
spreadsheet, text file or RDBMS table you can access via SAS ) , there’s no need to use the (IN)VALUE clause with 
it’s hard-coded pairs of values.  The CNTLIN option allows user-defined formats to be created from a SAS data set.  
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For instance, if the subject name and subject number data from the previous example was stored in a dataset, the 
appropriate informat can be created very easily. 

 

CNTLIN datasets must include the following fields: 

 fmtname  - name of format 

 type   - type of format, c=character, n=numeric, I=informat 

 start   - value to be converted 

 label  - converted value 

 

 
data subjects; 

  length subject $12; 

  input subject subject_no; 

cards; 

ALGEBRA 1 

ENGLISH 2 

HISTORY 3 

COMPSCI 4 

LAW 6 

CALCULUS 7 

run; 

 

data subjno_cntlin ( keep = fmtname type start label hlo ); 

 

   /*  Required fields for CNTLIN processing  */ 

   fmtname = 'subjno';  * format name ; 

   type    = 'i';   * type = informat ; 

   hlo     = ' ';   * high/low/other blank ; 

 

    /*  Read format value pairs from dataset, rename incoming variables as needed    */ 

   do until(eof); 

       set subjects ( rename = ( subject = start subject_no = label )) 

   end=eof; 

    output; 

   end; 

 

   /*  Handle 'other'  */ 

   hlo   = 'o'; 

   start = ' '; 

   label = 99; 

   output; 

 

   stop; 

run; 

 

proc format cntlin = subjno_cntlin; 

run; 

 

Sourcing the (in)format from a dataset ( or data source ) frees you up from maintenance that would otherwise be 
required when values are added, deleted or modified. 

 

Conversely, formats can be “unloaded” to a dataset using the CNTLOUT option.  Doing so permits the modification of 
the data underlying the user-defined format. 

 
695  proc format cntlout = subject_cntlout; 

696  run; 

 

NOTE: The data set WORK.SUBJECT_CNTLOUT has 8 observations and 21 variables. 

 
You will remember that when the subjno. format was created, we only used 5 variables.  However the CNTLOUT 
operation created a SAS dataset with 21 variables!  The label information on the CONTENTS listing provides more 
information about the data items that may be specified when creating user-defined formats.  See the Online Docs for 
additional details. 
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      -----Alphabetic List of Variables and Attributes----- 

 

 #    Variable    Type    Len    Pos    Label 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

20    DATATYPE    Char      8    101    Date/time/datetime? 

18    DECSEP      Char      1     99    Decimal separator 

 7    DEFAULT     Num       3    123    Default length 

19    DIG3SEP     Char      1    100    Three-digit separator 

16    EEXCL       Char      1     87    End exclusion 

 3    END         Char      9     33    Ending value for format 

12    FILL        Char      1     84    Fill character 

 1    FMTNAME     Char      8     16    Format name 

 9    FUZZ        Num       8      0    Fuzz value 

17    HLO         Char     11     88    Additional information 

 4    LABEL       Char     40     42    Format value label 

21    LANGUAGE    Char      8    109    Language for date strings 

 8    LENGTH      Num       3    126    Format length 

 6    MAX         Num       3    120    Maximum length 

 5    MIN         Num       3    117    Minimum length 

11    MULT        Num       8      8    Multiplier 

13    NOEDIT      Num       3    129    Is picture string noedit? 

10    PREFIX      Char      2     82    Prefix characters 

15    SEXCL       Char      1     86    Start exclusion 

 2    START       Char      9     24    Starting value for format 

14    TYPE        Char      1     85    Type of format 

 

PICTURE FORMATS 

We’re accustomed to seeing certain data items in familiar formats.  For example, phone numbers may be displayed 
with the area code enclosed in parenthesis and the exchange separated from the rest of the number with a dash.  
The user-defined formats discussed thus far convert data values from one form or value to another.  Picture formats 
allow us to push numeric values through a template to control its presentation. 

 

Picture formats are comprised of the digits 0 and 9 and special characters such as parenthesis, commas, decimal 
points and dashes that will separate the value in resulting output.  In the following example we have two numeric 
fields, phone number and net worth.  We’ve specified two different formats for the phone number depending on the 
presence or absence of a leading 1.  Net worth is displayed in $millions, but we have to do something special for 
those with less than a million dollars. 

 
data clients; 

  input name $ phone net_worth; 

  label name    = 'Name' 

      phone   = 'Phone Number' 

    net_worth   = 'Net Worth (Millions)'; 

cards; 

Tom 4162561234 12345678 

Dick 5196472472 29490000 

Harry 18004558673 155678 

George 9999999  

run; 

 

proc format ; 

  picture phone 

    2000000000-9999999999   = '999) 999-9999' ( prefix ='(') 

  9999999999<-19999999999 = '9-999-999-9999' 

  other           = 'Invalid'; 

  picture million ( round ) 

 low-<1000000 = '9.0M'     (prefix='$' mult=.00001 )   

 1000000-high = '0,000.0M' (prefix='$' mult=.00001 ); 

run; 

 

proc print data = clients split=' '; 

 format phone phone. net_worth million.; 

run; 
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Client Data   

                                     Net 

                    Phone           Worth 

Obs    Name         Number        (Millions) 

 

 1     Tom      (416) 256-1234      $12.3M 

 2     Dick     (519) 647-2472      $29.5M 

 3     Harry    1-800-455-8673       $0.2M 

 

In addition to the prefix, round, and multiplier options illustrated, picture formats also permits the specification of 

thousands separators, decimal separators and fill characters.  SAS date, time and datetime data can be displayed in 
custom formats as well using a suite of directives to specify the presence / format of the portions of the date / time 
value: 

 
data clients; 

  input name $ start_date date9.; 

  label name    = 'Name' 

      start_date  = 'Start Date'; 

 

cards; 

Tom 04Jan1984 

Dick 27Feb2003 

Harry 13Nov1994 

George 11Sep2005  

run; 

 

proc format ; 

  picture annodom  

    other = 'Day %d of the month %B, %Y Anno Domini         ' (datatype=date); 

run; 

 

title 'Client Data'; 

proc print data = clients split=' '; 

 format start_date annodom.; 

run; 

 

Client Data                                                      

                                      Start 

Obs    Name                           Date 

 

 1     Tom       Day 4 of the month January, 1984 Anno Domini 

 2     Dick      Day 27 of the month February, 2003 Anno Domini 

 3     Harry     Day 13 of the month November, 1994 Anno Domini 

 4     George    Day 11 of the month September, 2005 Anno Domini 

 

MULTILABEL FORMATS 

Thus far, each example has shown that only one formatted value is generated when the incoming data value is 
“pushed” through a format.  E.g. in the VALUE RANGES STATEMENT section above, a numeric grade resulted in a 
single letter grade - a 75 will always and only generate a “B” letter grade.  However, at times it’s very useful to have a 
single data item result in multiple formatted values.  Think of financial reporting where a transaction occurring on Feb 
10 must be reported in multiple totals: weekly, February month-end, first quarter and annual summary points.  Or, 
instances when sub-category totals must be rolled up into parent categories.   

 

In the example below, each credit card type must be summarized independently and totals also generated for the top-
level card issuer. 

 

/*  Test data  */ 

data amts; 

 do card_type = 'VG','VD','MG','MP'; 

  do _i = 1 to ceil(ranuni(1)*10); 

   amt = ranuni(2)*1000; 

   output; 
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  end; 

 end; 

run; 

 

/*  Create multilabel format, notsorted so summary appears in format order  */ 

proc format ; 

 value $cardtyp ( multilabel notsorted ) 

 'VG'  = 'Visa Gold' 

 'VD'  = 'Visa Dividend' 

 'MG'  = 'Mastercard Gold' 

 'MP'  = 'Mastercard Platinum' 

 'VA'-'VZ' = 'Visa' 

 'MA'-'MZ' = 'Mastercard'  ; 

run; 

 

/*  Summarize  */  

proc means data = amts sum; 

 format  card_type  $cardtyp.; 

 class  card_type   /mlf order=data preloadfmt; 

 var amt ; 

run; 

 

The color-coded output below shows how the Visa card results have been summarized independently and also into a 
Visa total line, similarly for Mastercard.  One pass through the data, multiple summary lines generated – efficiency!   

 

                         N 

card_type              Obs             Sum 

------------------------------------------ 

Visa Gold                2         1369.91 

 

Visa Dividend            3         2433.86 

 

Mastercard Gold          6         2380.13 

 

Mastercard Platinum     10         4885.58 

 

Visa                     5         3803.77 

 

Mastercard              16         7265.71 

 

 

The advantages of multilabel formats can be realized with only specific SAS procedures:  MEANS, SUMMARY, 
TABULATE and REPORT when the /MLF option is specified on the CLASS statement.  If multilabel formats are used 
with other SAS procedures ( or the /MLF option is omitted ), only the first format defined for each value will be used, 
e.g. ‘VG’ will appear as ‘Visa Gold’, not ‘Visa’ since ‘VG’ was specified before ‘VA’-‘VZ’ in PROC FORMAT. 

 

NESTED FORMATS 

Sometimes the user-defined format is only required for a specified set of values.  Rather than conditioning the 
application of formats by checking values of the incoming data, nested formats can be utilized.  In this example, 
values less than a million are to be displayed using the COMMA. format, values in the millions are to display 
‘Millions’, billions to display ‘Billions’, and anything higher displayed in exponential format. 

 
proc format ; 

  value largeno 

   low-<1000000     = [comma7.] 

 1000000-<1000000000   = 'Millions' 

 1000000000-<1000000000000 = 'Billions' 

 1000000000000-high   = [e13.2]; 

run; 

 

data numbers; 

   num = 123456;    output; 

   num = 2345678;   output; 

proc print data=numbers; 

  format num largeno.; 

run; 

 
Nested formats       

 

Obs    num 

 

 1     123,456 

 2     Millions 
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   num = 3456789012;  output; 

   num = 4567890123456; output; 

run; 

 3     Billions 

 4      4.567890E+12 

 

 

CREATING AND ACCESSING PERMANENT USER-DEFINED FORMATS 

Often you’ll want to create and permanently store user-defined formats.  To do so, it’s a matter of specifying the LIB= 
option on the PROC FORMAT statement.  

 
libname mydata 'C:\_Stratia\Presentations\sesug_2016\data'; 

libname temp   'C:\temp'; 

 

proc format lib=temp; 

  value largeno 

   low-<1000000     = [comma7.] 

 1000000-<1000000000   = 'Millions' 

 1000000000-<1000000000000 = 'Billions' 

 1000000000000-high   = [e13.2]; 

run; 

 

data mydata.numbers; 

   format num largeno.;  /*  Format permanently assigned to variable  */ 

   num = 123456;    output; 

   num = 2345678;   output; 

   num = 3456789012;  output; 

   num = 4567890123456; output; 

run; 

 

proc print data=mydata.numbers; /*  Format permanently assigned to num  */ 

run;         /*  so not specified in PRINT           */ 

 

However, you’re not done yet, defining the library isn’t enough to access permanent formats, you must tell SAS 

where to find them.  By default, SAS automatically checks the WORK library and, if it exists, a libref of LIBRARY.  
Since our format was created in TEMP, running the PROC PRINT in the example will error because the largeno. 

format, permanently assigned to the NUM variable in the NUMBERS dataset could not be found in WORK or 
LIBRARY: 

 
561  proc print data=mydata.numbers; 

ERROR: The format LARGENO was not found or could not be loaded. 

562  run; 

 

To add TEMP to the format search path, the FMTSEARCH option must be correctly set. 

 

options fmtsearch = ( temp work); 

 

Now, when a non-SAS-supplied format is encountered in the PRINT procedure, the FORMATS catalogs in TEMP 
and WORK are successfully searched for the largeno. format. 

 

POTENTIAL PITFALLS WITH FORMATS 

It’s not easy to have problems with formats, but there are a few gotchas to watch for. 

 

MISSING FORMATS CATALOG 

In the previous example, the largeno. format was permanently defined to the NUM variable in the 

MYDATA.NUMBERS dataset via the FORMATS statement in the data step.  The format catalog was stored in the 
TEMP library, defined to C:\temp.  Unfortunately, an overly exuberant hard-drive clean-up emptied the C:\temp 
directory, deleting the formats catalog containing largeno.  When an attempt is made to PRINT the dataset, the error 

we received before issuing the FMTSEARCH options was again generated: 

 
ERROR: The format LARGENO was not found or could not be loaded. 

 

However because the FORMATS catalog has disappeared, it’s no longer as simple as specifying the correct 
FMTSEARCH option to tell SAS where to find the format.  It’s not even possible to copy the NUMBERS data to a new 



SAS® Formats: Effective and Efficient, continued  SESUG 2016 

14 

data set: 

 
700  data new; 

701    set mydata.numbers; 

702  run; 

 

ERROR: The format LARGENO was not found or could not be loaded. 

NOTE: The SAS System stopped processing this step because of errors. 

WARNING: The data set WORK.NEW may be incomplete.  When this step was stopped there were 0 

         observations and 1 variables. 

 

By default, SAS errors and refuses to proceed if a format error is detected.  However the nofmterr option is available 

to allow the step to continue when format errors are encountered. 

 

options nofmterr; 

 

Let's see what the log produced now that we've specified nofmterr. 

 
704  options nofmterr; 

705  title 'Largeno. AFTER Delete'; 

706  proc print data=numbers; 

707  run; 

 

NOTE: There were 4 observations read from the data set WORK.NUMBERS. 

NOTE: At least one W.D format was too small for the number to be printed. The decimal may be 

      shifted by the "BEST" format. 

 
Largeno. AFTER Delete 

Obs             num 

 

 1           123456 

 2          2345678 

 3       3456789012 

 4     4.5678901E12 

 

While SAS found that the default BEST. format was inadequate for the data values, the dataset was processed 
despite the missing largeno. format. 

 

INCORRECT FORMAT WIDTH 

Way back in the introduction, when we were talking about the components of a format, we found out that the number 
before the period was the total allowed width.  For example, the format dollar12.2 allows 12 positions for everything, 

dollar sign, digits, commas, decimal point and, if we're talking the balances in government books, a negative sign. 

 
balance = -1234567.89; 

put balance dollar10.2; 

 
214     balance = -1234567.89; 

215     put balance dollar10.2; 

-1234567.9 

NOTE: At least one W.D format was too small for the number to be printed. The decimal may be 

      shifted by the "BEST" format. 

 

SAS has done the math and concluded you can't put 10lbs of stuff in a 5lb bag.  Rather than ensuring balance was 
displayed replete with dollar signs and commas but missing significant digits, SAS defaulted to the best. format and 

pumped out as many significant digits as it could into the allotted 10 bytes.   

 

Sometimes, despite SAS's best. efforts, there just isn't room.  In those cases a string of asterisks is output along with 

the " ain't gonna fit " log message.  You've seen this same type of behavior in Microsoft Excel which displays # signs 
when the cell width is not adequate to contain the value in it. 
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widgets = 123; 

put widgets z2.; 

 

218  data _null_; 

219     widgets = 123; 

220     put widgets z2.; 

221  run; 

** 

NOTE: At least one W.D format was too small for the number to be 

printed. The decimal may be shifted by the "BEST" format. 

 

 

 

INFORMAT WITH DECIMALS 

Many of the numbers we deal with are not integers.  The fact that we have to account for decimals leaves us open to 
another pitfall.  Consider the following data step where different amounts with varying precision are read.  We've 
specified an informat with a maximum length of 7 ( including decimal point ) and two decimal digits. 
 

data all_amts; 

   format amt 7.2; 

   input amt 7.2; 

cards; 

123.45 

3.7 

567.88787 

67 

11. 

      run; 

Obs        amt 

 

 1      123.45 

 2        3.70 

 3      567.89 

 4       0.67 

 5       11.00 

 

 

From the PRINT output, we can see that our disparate data has been handled quite nicely for the most part.  It is 
readily apparent that SAS took the decimal point supplied in the input data at face value and truncated or added 
zeroes to flesh out the 7.2 format.  But, there's a problem with 67.  Note that this line of input data did not contain a 
decimal point.  When using a W.D numeric informat, SAS divides the input data by 10

D
 ( 10 ** D ) unless the input 

data contains a decimal point.  Be consistent or your data values may end up smaller by magnitudes! 

 

EASY LIVING VIA FORMATS 

We’ve already seen some benefits of user-defined formats, custom formatting, data conversion and table lookup 
operations, but there’s more.   There’s other gains to be realized, formats can also deliver us from some of the 
drudgery in our SAS life.  Let's look at a few time savers available via the means of formats. 

 

JUSTIFICATION 

Typically, character data are left-justified, numeric data right-justified.  There's times when you might want to left-
justify a numeric value.  Perhaps you're ticked at the chief accountant, so why not left-justify all the columns of 
numbers on that daily journal entry report?  A more realistic application, creating labels for report lines.  Note how the 
line value of 9 is snuggled up to the hyphen when the -L format modifier is added: 

 
data _null_; 

  do line = 9 to 10; 

     left  = 'Line-' || put(line,2.-L); 

     right = 'Line-' || put(line,2.); 

     put @2 left= / right=; 

  end; 

run; 

Log Output: 
 

 left=Line-9 

right=Line- 9 

 left=Line-10 

right=Line-10 

 

 

RETENTION OF LEADING ZEROES 

In most numeric data, the high-order, leading zeroes are not required on output.  If we have an amount field with 
values ranging from 4 to 2000, we wouldn't want the lower values to be displayed with leading zeroes, e.g. 0004.  
However, there are times when leading zeroes are important.  Consider part numbers, invoice and cheque numbers 
and the like: 

 
a = 4; 

put a @10 a z4.; 
Log Output: 

4        0004 
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PRESERVATION OF LEADING SPACES 

By default, SAS ignores leading spaces.   Well, worse than that, it'll get rid of them if it can.  If leading spaces are 
important, you must explicitly tell SAS to keep 'em via the $CHAR. informat at INPUT time: 

 

data a; 

   input @1 fruit1 $10.     @11 where1 $10. 

         @1 fruit2 $char10. @11 where2 $char10.;  /*  Read line again  */ 

 

 

cards; 

12345678901234567890 

     Apple   Orchard 

    Orange     Grove 

     Grape     Store 

run; 

 

Note the fruit2 and where2 retained the leading spaces while fruit1 and where1 are left-justified: 
 

Obs    fruit1        where1          fruit2        where2 

 

 1     1234567890    1234567890    1234567890    1234567890 

 2     Apple         Orchard            Apple       Orchard 

 3     Orange        Grove             Orange         Grove 

 4     Grape         Store              Grape         Store 

 

SUMMARIZE DETAIL USING FORMATTED VALUES 

Base SAS comes with many useful procedures designed to make common computing tasks more efficient;  more 
efficient both in terms of coding and processing effort.  As a rule, if SAS has provided a procedure to deal with a data 
manipulation task, it really ought to be used over a home-grown solution.   For example, the TABULATE procedure 
displays descriptive statistics ( e.g. mean, sum ) in tabular format with very little coding effort.  Consider a small data 
set containing sales figures by date: 

 

( Note: date field literals defined with the ‘date value’d syntax are automatically converted to internal SAS date 

values.  ie. the DO loop iterates from 15706 to 16070, the internal values for 10Jan2003 and 31Dec2003 ). 

 
data analysis ; 

  format date   yymmddd10. 

         sales  dollar12.2; 

  do date = '01jan2003'd to '31dec2003'd by 11; 

      sales  = ranuni(1) * 20000; 

      output; 

  end; 

run; 

 

The date field is stored in internal SAS format so the benefit of SAS date formats can be brought to bear on the field. 
The simplest way to summarize the sales figures by month and quarter is using the simple TABULATEs below.  Note 
that no pre-processing of the data was required and the only differences between the TABULATE steps is the 
FORMAT specified for the date variable.  

 
proc tabulate data=analysis;  

   class date;  

     var sales ;  

   table date='Month / 

Year',sales='Sales' * sum=' ' 

*f=dollar12.2;  

  format date monyy5.;  

run; 

 

 

Note that the monyy5. format has been applied to 

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ† 

‚                      ‚   Sales    ‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚Month / Year          ‚            ‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚ 

‚JAN03                 ‚  $31,097.51‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚FEB03                 ‚  $43,005.57‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚MAR03                 ‚  $22,489.30‚ 
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the date field, thus summarizing the data by month 
and year. 

 

 

 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

etc… 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚OCT03                 ‚  $41,397.52‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚NOV03                 ‚  $33,759.13‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚DEC03                 ‚  $47,338.74‚ 

Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ 

 
 

 

 

 

 

 

proc tabulate data=analysis;  

   class date;  

     var sales ;  

   table date='Quarter',sales='Sales' * 

sum=' ' *f=dollar12.2;  

  format date yyq6.;  

run; 

 

Note that the yyq6. format has been applied to the 
date field, thus summarizing the sales data by year 
and quarter.  Same dataset, same field, same data, 
but different results via simply altering the format 
specification. 
 
An exercise for the reader - how could the monthly 
and quarterly summaries have been performed at 
the same time using MULTILABEL formats? 

 

 

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ† 

‚                      ‚   Sales    ‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚Quarter               ‚            ‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚ 

‚2003Q1                ‚  $96,592.38‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚2003Q2                ‚  $77,143.28‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚2003Q3                ‚  $86,315.43‚ 

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚2003Q4                ‚ $122,495.39‚ 

   Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ 

 

$CONCLUSION. 
Sometimes it seems as though our working life consists of nothing but data, mountains of it.   SAS is our favorite tool 
for scaling that mountain, reading and massaging data, dicing, summarizing, storing and finally presenting it again in 
a meaningful manner.  Informats and formats, both SAS supplied and user-defined, are indispensable in all these 
activities. 
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