
1

Paper BB-04

QC Your SAS® and RDBMS Data Using Dictionary Tables
Harry Droogendyk, Stratia Consulting Inc., Lynden, ON

ABSTRACT
In the context of our daily occupations we are always examining data. Whether we're testing ETL processes that
populate data marts, verifying data pulled for testing, or just becoming acquainted with unfamiliar data there are
some rudimentary things we do typically do. Simple analysis of continuous variables such as min, max, mean etc...
and frequency distributions of categorical variables are often used to provide quick insight.

This paper presents a macro that does the QC work for you, driving the process from dictionary tables, whether the
data is from SAS® datasets or sourced from any of the DB systems accessible by SAS.

INTRODUCTION
What types of things do we typically do when we’re seeking to understand either the shape or the quality of our
data? Sometimes the interaction or relationship between variables is important but not always, or at least not
initially. Often simple analysis will provide enough insight into the data to quickly identify quality issues or give us a
good idea of the contents of the data set or table.

If simple analysis will suffice, we’re left with a sleuthing exercise. Which of the character variables are really
categorical? Are all the numeric variables continuous or are some of them discrete? Once those questions are
answered, the appropriate SAS procedures can be run on the appropriate variables to create useful analysis.

Rather than having to go through the discovery exercise each time fresh data is encountered or new ETL results are
to be verified, I developed a macro that will do the grunt work for me. The rest of the paper describes the
methodology of the macro and how it makes the initial data QC exercise a very simple exercise. The macro is
found in the appendix.

LAZY PROGRAMMERS USE DICTIONARY DATA
Lazy programmers are a good thing. Lazy programmers would rather put a little additional thought into the design
of a solution and save themselves the subsequent maintenance that inflexible processes inevitably demand. Lazy
programmers don’t like hard-coding and would rather allow the data to drive the process. Doing so frees the lazy
programmer from mundane tasks and allows time to be spent on much more useful tasks that add value and don’t
require mind-numbing maintenance.

DATA DRIVEN PROCESSES
Data driven processes use metadata, or the characteristics of the data itself, to determine the processing required.
For instance, if the data contained only character columns or discrete numeric data, there would be no need to
generate min, max, means etc… Metadata will provide the requisite information needed to create a data-driven QC
process.

SURFACING METADATA
SAS has “dictionary” data that provide data about the data, or, metadata. The SAS dictionary data provides a great
deal of insight into our SAS environment. For example, we can identify the libraries defined to the SAS session,
data sets within those libraries and the columns within the data sets and their characteristics. Almost everything
associated with a SAS session, whether it be batch or interactive, can be surfaced through the metadata.
Additional dictionary information includes: assigned external files , macro variables, options, titles, formats etc…

The table and column metadata is very helpful for the QC exercise. Not only will the metadata provide the columns
within the table, but also the types and lengths of each variable. Using metadata which is returned programmatic-
ally, the lazy programmer is able to build a process that utilizes the metadata to create a flexible process that will
analyze the business data.

SAS metadata is available via three different avenues. PROC CONTENTS output can be directed to a SAS dataset
and manipulated as required. Secondly, a special library named DICTIONARY is available for PROC SQL queries.
DICTIONARY has a number of members, each relating to a different set of objects for which metadata is available,

2

eg. TABLES, COLUMNS, INDEXES etc… Thirdly, a series of SASHELP views are automatically available in any
SAS session to both the data step and SQL procedure. SASHELP views have slightly different names than the
DICTIONARY members, but they contain the same data. A sampling of SASHELP view names are VTABLE,
VCOLUMN, VINDEX.

SASHELP Views

Querying SAS Dictionary Data:

proc sql;
 select libname, memname, name
 from sashelp.vcolumn
 where libname = 'WORK'
 and memname = 'CLASS'
 order by name
 ;
quit;

Library
Name Member Name Column Name
ƒƒ
WORK CLASS Age
WORK CLASS Height
WORK CLASS Name
WORK CLASS Sex
WORK CLASS Weight

3

In the same way that SAS has dictionary data, relational database management systems (RDBMS) have similar
facilities to provide metadata. Just as SAS has a set of tables or views to provide this data, each DB system also
has a similar set of tables to surface the metadata. Unfortunately, each RDBMS uses different names for the
dictionary table names and the column names within those dictionary tables.

Teradata example from DBC.COLUMNS. DBC is the database name where Teradata dictionary data is found.

Querying Teradata dictionary data:

select tablename, columnname, columnformat, columntype
 from dbc.columns
 where databasename = ‘your_db'
 and tablename = ‘your_table’
 order by columntype, columnname
 ;

DB2 example from SYSCAT.COLUMNS. SYSCAT is the schema where DB2 dictionary data is found:

4

5

Querying DB2 dictionary data:

select tabschema, tabname, colname, typename
 from syscat.columns
 where tabschema = 'DROOGH2'
 and tabname = 'QC_TEST'
 order by typename, colname
 ;

DB2 Dictionary Results:

TABSCHEMA TABNAME COLNAME TYPENAME
--------- -------- ------------------------ --------
DROOGH2 QC_TEST ACCT_ID BIGINT
DROOGH2 QC_TEST CTD_CREDIT_AM DECIMAL
DROOGH2 QC_TEST CTD_DEBIT_AM DECIMAL
DROOGH2 QC_TEST DISPUT_AM DECIMAL
DROOGH2 QC_TEST CTD_CREDIT_CT INTEGER
DROOGH2 QC_TEST CTD_DEBIT_CT INTEGER
DROOGH2 QC_TEST ACCT_FAMILY_CD SMALLINT
DROOGH2 QC_TEST ACCT_SUBFAM_CD SMALLINT
DROOGH2 QC_TEST ACCT_TYPE_ID SMALLINT
DROOGH2 QC_TEST APPL_SUFFIX_NO SMALLINT
DROOGH2 QC_TEST CLIENT_PRODCT_CD SMALLINT
DROOGH2 QC_TEST TBAL_CD SMALLINT
DROOGH2 QC_TEST ACCT_TYPE_MN VARCHAR
DROOGH2 QC_TEST ACCT_TYPE_NA VARCHAR

The problem is beginning to emerge…. Each RDBMS system (and SAS) has different dictionary table names and
different column names within those dictionary tables. If the intent is to create a generalized, data-driven utility to
QC data, any data, it appears as though a roadblock has been encountered before we’ve begun. But…, doesn’t
SAS solve every problem?! J

SAS/ACCESS PRODUCTS
SAS is able to access non-SAS back-end data stores providing the appropriate SAS/Access product is licensed, eg.

SAS/ACCESS Interface to DB2
SAS/ACCESS Interface to ORACLE

Licensing the SAS/Access software provides the “middle-ware” that allows SAS to communicate with the RDBMS,
issue queries and commands to the data base, and receive query results from the data base. Often queries are
issued via “pass through” methodology where an SQL query written in the syntax of the database is “passed
through” a connection to the data base and the results returned to SAS.

SAS/ACCESS LIBNAME ENGINE
Alternatively, SAS/Access also provides a LIBNAME engine which allows database accessibility in a manner very
similar to that used for native SAS data sets. When a SAS/Access library is established, the database tables may
be created, queried and manipulated by standard SAS data steps and SAS procedure steps.

The SAS/Access libname statement often requires additional parameters to provide authentication credentials and
options specific to the data base engine for addressability and efficiency, eg.

libname _db2 db2 database=test schema=droogh2;
libname _td teradata database=data_base_name user=userid pass=password;

6

SURFACING RDBMS METADATA USING SAS/ACCESS
Once a LIBNAME connection has been established to the data base system, the DB metadata may be accessed
using standard SAS procedures such as PROC CONTENTS. In the example below, tracing options have been
specified to provide additional information on the operations going on under the covers.

Once the DB2 connection is made, the DB2 table metadata is being accessed via PROC CONTENTS.

options sastrace=',,,d' sastraceloc=saslog nostsuffix;

libname _db2 db2 database=test schema=droogh2;

proc contents data = _db2.qc_test;
run;

Log results showing the SASTRACE output:

DB2: AUTOCOMMIT is NO for connection 0
516 options sastrace=',,,d' sastraceloc=saslog nostsuffix;
518 libname _db2 db2 database=test schema=droogh2;
NOTE: Libref _DB2 was successfully assigned as follows:
 Engine: DB2
 Physical Name: test

DB2: AUTOCOMMIT turned ON for connection id 0
DB2_1: Prepared:
SELECT * FROM droogh2.QC_TEST FOR READ ONLY
DB2: COMMIT performed on connection 0.
520 proc contents data = _db2.qc_test;
521 run;
NOTE: PROCEDURE CONTENTS used :

Behind the scenes additional processing is taking place that is not reflected in the SAS log. Through the
SAS/Access engine SAS is making a series of calls to the back-end database to request the information required
for PROC CONTENTS

§ SQLNumResultCols number of columns in table
§ SQLDescribeCol column name, type, length etc.
§ SQLColAttribute type specific column attributes

The end result is CONTENTS output that is quite familiar though the results are a little more sparse than is typically
returned for a SAS data set :

The CONTENTS Procedure

Data Set Name _DB2.QC_TEST Observations .
Member Type DATA Variables 14
Engine DB2 Indexes 0
Created . Observation Length 0
Last Modified . Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO

7

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

12 ACCT_FAMILY_CD Num 8 11. 11. ACCT_FAMILY_CD
 1 ACCT_ID Num 8 20. 20. ACCT_ID
13 ACCT_SUBFAM_CD Num 8 11. 11. ACCT_SUBFAM_CD
10 ACCT_TYPE_ID Num 8 11. 11. ACCT_TYPE_ID
11 ACCT_TYPE_MN Char 15 $15. $15. ACCT_TYPE_MN
14 ACCT_TYPE_NA Char 23 $23. $23. ACCT_TYPE_NA
 3 APPL_SUFFIX_NO Num 8 11. 11. APPL_SUFFIX_NO
 2 CLIENT_PRODCT_CD Num 8 11. 11. CLIENT_PRODCT_CD
 9 CTD_CREDIT_AM Num 8 15.2 15.2 CTD_CREDIT_AM
 8 CTD_CREDIT_CT Num 8 11. 11. CTD_CREDIT_CT
 7 CTD_DEBIT_AM Num 8 15.2 15.2 CTD_DEBIT_AM
 6 CTD_DEBIT_CT Num 8 11. 11. CTD_DEBIT_CT
 5 DISPUT_AM Num 8 15.2 15.2 DISPUT_AM
 4 TBAL_CD Num 8 11. 11. TBAL_CD

Despite the differences, it’s apparent that the SAS/Access engine is returning table and column metadata for
database systems in exactly the same way it’s provided for SAS datasets. A generalized approach to surfacing
metadata, regardless of the source of the data is possible.

QC YOUR DATA – A GENERALIZED APPROACH
Given a library reference pointing to the data store, whether it be SAS, DB2, Teradata, Oracle etc. it’s possible to
generate column metadata with enough information to begin to make sensible determinations for the initial QC
exercise. While frequency distributions on many character fields may be helpful, it certainly won’t be on a field
containing customer name. Numeric analysis including min, max and mean will suffice for most numeric fields, but
not for discrete numeric values that you might find in a column containing numeric codes.

The utility macro presented in the rest of this paper provides the methodology and options to drive the QC process.
Let’s walk through the highlights of the %qc_db_data macro.

MACRO HELP TEXT
Macros are great, especially if usage documentation is available. J Utility macros of this nature benefit from the
inclusion of a positional parameter that will optionally generate “help” text in the log outlining the purpose of the
macro and the parameters it expects, ie. %qc_db_data(?). The resulting log text provides the macro
documentation.

===
%qc_db_data(help, lib=, table=, drop_columns=, keep_columns=, by_vars=, where=, freq_limit =
100)

QC / analyze the RDBMS table specified, creating frequency distributions or min, max, mean,
stddev and sum depending on the column type and granularity of the data in the table.

Parms:
 help any value in the sole positional parameter provides this help text
 lib SAS libref via RDBMS engine for schema that contains &table
 table RDBMS table to be analyzed, MUST be sorted by &by_vars (if specified)
 drop_columns comma-delimited, single-quoted column names to be IGNORED in analysis,
 - must use %str('col1','col2') when specifying multiple column names
 - always specify 'acct_id', 'cust_id' type fields in this parm
 keep_columns comma-delimited, single-quoted column names to be considered for analysis,
 - must use %str('col1','col2') when specifying multiple column names
 by_vars comma-delimited, single-quoted column names for BY groups
 - must use %str('col1','col2') when specifying multiple column names
 where WHERE clause to apply to input &schema..&table to focus analysis
 freq_limit upper limit of number of distinct values used to decide which vars generate

8

 frequency distributions, default is 100 distinct values
 - all columns with <= &freq_limit distinct values will generate freq dist
 - num columns with > &freq_limit distinct values will generate num analysis

Macro logic outlined below:

 1. Derive table columns using PROC CONTENTS data=&lib..&table, incorporate &drop_column
 and &keep_column criteria
 2. count distinct values for all selected fields
 3. numeric fields where count of distinct values > &freq_limit, create min/max/stddev/sum stats
 4. run frequency distribution on any fields that have <= &freq_limit distinct values
 5. if &by_vars are specified, all stats will be created with the BY groups specified
 6. create datasets of final results in remwork._qc_continuous_data and
 remwork._qc_categorical_data

Sample Invocation:

libname rdbms <RDBMS engine> <RDBMS connection particulars>;

%qc_db_data(lib = rdbms,
 table = qc_test,
 drop_columns = %str('acct_id'),
 by_vars = %str('acct_type_na'),
 where = %str(acct_type_na like 'SAV%'),
 freq_limit = 50
)

INVOKING THE MACRO

libname _db2 db2 database=test schema=droogh2;

%qc_db_data(
 lib = _db2,
 table = qc_test,
 drop_columns = %str('acct_id'),
 by_vars = %str('acct_type_na'),
 where = %str(acct_type_na like '%Visa%'),
 freq_limit = 100
);

As outlined in the macro generated help text, a library reference must be established before the macro is invoked.
Since the library reference is established outside the macro the user has full control in defining the data source.
The data can reside anywhere that is addressable via the LIBNAME statement. In the example above, the data to
be examined resides in a DB2 table, hence the DB2 engine specification in the LIBNAME statement.

The macro parameters define the QC test particulars:

§ lib= the data resides in the libref _db2
§ table= the data table is qc_test
§ drop_columns= acct_id is a numeric column, but since we’re not interested in analyzing a table key, it

 is being dropped from the analysis
§ by_vars= the results are required for each acct_type_na value, hence the by_vars parameter
§ where= not all accounts are to be analyzed, only those with the word “Visa” in the account type

 name
§ freq_limit= if less than 100 distinct values are found in a column, a frequency distribution will be

 generated, otherwise analysis will be performed on numeric columns (character
 columns with more than 100 distinct values will be ignored)

9

MACRO FUNCTIONALITY
Since the reader of this paper is a SAS programmer it’s not necessary to walk through the entire macro (available
in its entirety in the appendix). However, some important highlights of the macro functionality will be discussed.
Explanatory comments follow each code segment.

proc contents data = &lib..&table
 out = _qc_db_columns_all
 (keep = name type formatl
 rename = (name = colname)) noprint;
run;

Utilizing the availability of data table metadata provided by the LIBNAME (no matter where the data resides), use
PROC CONTENTS to extract the columnar metadata, storing it in a SAS dataset, keeping only the data items
required.

data _qc_db_columns;
 set _qc_db_columns_all;

 %if &drop_columns > %then %do;
 if colname not in (%upcase(&drop_columns));
 %end;

 %if &keep_columns > %then %do;
 if colname in (%upcase(&keep_columns));
 %end;

 if type = 1 then coltype = 'N'; else coltype = 'C';

 drop type;
run;

Since not all the variables in the selected table are good candidates for analysis, macro parameters allow variables
to be specified in the KEEP and DROP parameters. In practice, it really only makes sense to specify one or the
other. Based on the &keep_columns and &drop_columns parameter values, subset the table variables.

/*
 Create the count(distinct x) as x phrases. The
 results of these will determine whether we do
 freq distribution on the variables
*/

select

'count (distinct(' || trim(colname) ||
 ')) as ' || trim(column_name)

 into :_qc_count_distinct separated by ’,’

 from _qc_db_columns

Continuing with the data-driven approach, programmatically generate “count distinct” SQL clauses from the table
metadata. These counts will be used to decide if frequency distributions ought to be produced for each variable.

/*
 Count distinct values of each variable,
 these counts used to decide if
 min/max/etc.. or freqs to be done
*/
 create table _qc_count_distinct as
 select &_qc_count_distinct
 from &lib..&table
 %if &where ne %then %do;
 where &where %end; ;

10

Using the “count distinct” clauses built in the previous step, execute the counts against the source table, creating a
table of the distinct counts by variable. Note the WHERE clause is created only if the &where parameter was
specified when the macro was invoked. The result below is then transposed into a table called
_qc_count_distinct_xpose to make the columns available as rows.

/* Numeric columns will be run through proc summary */

 select d.colname
 into :numeric_cols separated by ' '

 from _qc_db_columns d,
 _qc_count_distinct_xpose c

 where d.colname = c.colname
 and d.coltype = 'N'
 and c.cnt > &freq_limit
 ;

 %let numeric_fld_cnt = &sqlobs;

The columns eligible for numeric analysis are those that are typed numeric and have more distinct values than the
cutoff for frequency distribution. After the SELECT executes, note that the &numeric_fld_cnt macro variable will
contain the number of variables requiring numeric analysis.

 /*
 Any column with < &freq_limit distinct values is freqqed.
 This means that some character columns will have no analysis
 performed on them, eg. name fields.
 */

 select d.colname, d.colname
 into :char_col1 - :char_col&sysmaxlong ,
 :char_cols separated by ' '

 from _qc_db_columns d,
 _qc_count_distinct_xpose c

 where d.colname = c.colname
 and c.cnt <= &freq_limit ;

 %let char_fld_cnt = &sqlobs;

11

Any column, character or numeric, that has less distinct values than &freq_limit will be subject to frequency
distribution.

proc summary data = &lib..&table (keep = &numeric_cols &by_vars_stmt)
 nway missing ;

 %if &where ne %then %do;
 where &where;
 %end;

 var &numeric_cols;

 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted; * RDBMS does not necessarily
 return rows in correct order
 for mixed-case character
 columns;
 %end;

 output out = _qc_metrics_num_n (drop = _:) n= ;
 output out = _qc_metrics_num_min (drop = _:) min= ;
 output out = _qc_metrics_num_max (drop = _:) max= ;
 output out = _qc_metrics_num_mean (drop = _:) mean= ;
 output out = _qc_metrics_num_stddev (drop = _:) stddev=;
 output out = _qc_metrics_num_sum (drop = _:) sum= ;
run;

The table columns identified as candidates for numeric analysis are processed by PROC SUMMARY. Note that the
WHERE and BY statements will only be included if required. As per the macro documentation, if BY variables are
being used, the incoming data MUST be sorted ! Since some databases ignore the case of column values when
sorting, NOTSORTED is specified on the BY statement in the event SAS and the back-end data store use different
collation schemes.

The separate output datasets created for each measure will be transposed and merged back together towards the
end of the process. Note as well the KEEP data set option where only the required variables are returned from the
data source. This makes a big difference in execution time when accessing large tables from DB systems.

proc freq data = &lib..&table (keep = &char_cols &by_vars_stmt);

 %if &where ne %then %do;
 where &where;
 %end;
 * RDBMS sort order for mixed-case character columns differs;
 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted;
 %end;

 %do i = 1 %to &char_fld_cnt;
 tables &&char_col&i / missing
 out = &&char_col&i (rename = (&&char_col&i = value)) ;
 %end;
run;

Run a PROC FREQ for the categorical character and numeric variables, specifying each variable in a separate
TABLE statement in order to save the frequency distributions in SAS datasets.

After a series of transposes and merges, the finished results are displayed in two datasets, one for categorical
variables, the other for continuous.

12

Note the presence of the BY variable in each dataset. Results are presented within each BY variable value. The
WORK datasets may be saved to permanent libraries or output into presentation quality reports using ODS. The
usefulness of this macro could easily be extended for periodic QC procedures on the same type of data by keeping
figures for each period and comparing period over period values.

CONCLUSION
Flexible, maintenance-free, data-driven code is made possible by leveraging metadata. The SAS/Access engine
provides seamless access to back-end data and allows standard SAS PROCs to be run against database tables
providing rudimentary data analysis that can assist in rapid data discovery.

Please check my website below for the latest version of the %qc_db_tables macro as improvements will be made!

REFERENCES
SAS/Access 9.2 For Relational Databases Reference, Third Edition,
http://support.sas.com/documentation/cdl/en/acreldb/63283/HTML/default/viewer.htm#/documentation/cdl/en/acreldb/63283/H
TML/default/titlepage.htm

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Harry Droogendyk
Stratia Consulting Inc.
905-296-3595
www.stratia.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/acreldb/63283/HTML/default/viewer.htm#/documentation/cdl/en/acreldb/63283/H
http://www.stratia.ca

13

/***

 Author: Harry Droogendyk harry@stratia.ca

 Date: 2010-01-28

 SAS macro to provide analysis of RDBMS table contents. See the macro document for more information. To display
 macro documentation, invoke the macro with a single positional parameter:

 %qc_db_data(?)

--
Modifications:
--
Date Who What
--

/***/

%macro qc_db_data(help,
 lib =,
 table =,
 drop_columns =,
 keep_columns =,
 by_vars =,
 where =,
 freq_limit = 100
);

 %if %length(&help) > 0 %then %do;
 %put %nrstr();
 %put %nrstr(==);
 %put %nrstr(%qc_db_data(help, lib=, table=, drop_columns=, keep_columns=, by_vars=, where=, freq_limit = 100));
 %put %nrstr();
 %put %nrstr(QC / analyze the RDBMS table specified, creating frequency distributions or min, max, mean,);
 %put %nrstr(stddev and sum depending on the column type and granularity of the data in the table.);
 %put %nrstr();
 %put %nrstr(Parms:);
 %put %nrstr(help any value in the sole positional parameter provides this help text);
 %put %nrstr(lib SAS libref via RDBMS engine for schema that contains &table);
 %put %nrstr(table RDBMS table to be analyzed, MUST be sorted by &by_vars (if specified));
 %put %nrstr(drop_columns comma-delimited, single-quoted column names to be IGNORED in analysis,);
 %put %nrstr(- must use %str('col1','col2') when specifying multiple column names);
 %put %nrstr(- always specify 'acct_id', 'cust_id' type fields in this parm);
 %put %nrstr(keep_columns comma-delimited, single-quoted column names to be considered for analysis,);
 %put %nrstr(- must use %str('col1','col2') when specifying multiple column names);
 %put %nrstr(by_vars comma-delimited, single-quoted column names for BY groups);
 %put %nrstr(- must use %str('col1','col2') when specifying multiple column names);
 %put %nrstr(where WHERE clause to apply to input &schema..&table to focus analysis);
 %put %nrstr(freq_limit upper limit of number of distinct values used to decide which vars generate);
 %put %nrstr(frequence distributions, default is 100 distinct values);
 %put %nrstr(- all columns with <= &freq_limit distinct values will generate freq dist);
 %put %nrstr(- num columns with > &freq_limit distinct values will generate num analysis);

mailto:harry@stratia.ca

14

 %put %nrstr();
 %put %nrstr(Macro logic outlined below:);
 %put %nrstr();
 %put %nrstr(1. Derive table columns using PROC CONTENTS data=&lib..&table, incorporate &drop_column);
 %put %nrstr(and &keep_column criteria);
 %put %nrstr(2. count distinct values for all selected fields);
 %put %nrstr(3. numeric fields where count of distinct values > &freq_limit, create min/max/stddev/sum stats);
 %put %nrstr(4. run frequency distribution on any fields that have <= &freq_limit distinct values);
 %put %nrstr(5. if &by_vars are specified, all stats will be created with the BY groups specified);
 %put %nrstr(6. create datasets of final results in remwork._qc_continuous_data and);
 %put %nrstr(remwork._qc_categorical_data);
 %put %nrstr();
 %put %nrstr(Sample Invocation:);
 %put %nrstr();
 %put %nrstr(libname rdbms <RDBMS engine> <RDBMS connection particulars>;);
 %put %nrstr();
 %put %nrstr(%qc_db_data%(lib = rdbms,);
 %put %nrstr(table = qc_test,);
 %put %nrstr(drop_columns = %str('acct_id'),);
 %put %nrstr(by_vars = %str('acct_type_na'),);
 %put %nrstr(where = %str(acct_type_na like 'SAV%'),);
 %put %nrstr(freq_limit = 50);
 %put %nrstr());
 %put %nrstr(==);
 %put %nrstr();

 %return;
 %end;

 %local by_vars_stmt sample ;

 /* Clean up results datasets before we begin */

 proc datasets lib = work nodetails nolist;
 delete _qc: / mtype = data;
 run;
 quit;

 /* If BY vars have been specified, clean up the quotes so we can use the variable names in a BY statement */

 %if &by_vars ne %then %do;
 %if &drop_columns ne %then
 %let drop_columns = &drop_columns, &by_vars;
 %else
 %let drop_columns = &by_vars;
 %let by_vars_stmt = %sysfunc(compress(&by_vars,%str(%'))); /* 'For use in BY statements */
 %end;

 /*
 Identify character / numeric fields in the table. If &keep_columns / &drop_columns
 have been specified, we'll use that to define the columns we care deeply about. Creating
 a SAS table of the RDBMS table columns we're interested in.

 We're using the format as a proxy for length since SAS will return 8 for all numeric fields,

15

 we want the actual format.
 */

 proc contents data = &lib..&table
 out = _qc_db_columns_all (keep = name type formatl
 rename = (name = colname)
)
 noprint;
 run;

 data _qc_db_columns;
 set _qc_db_columns_all;
 %if &drop_columns > %then %do;
 if colname not in (%upcase(&drop_columns));
 %end;

 %if &keep_columns > %then %do;
 if colname in (%upcase(&keep_columns));
 %end;

 if type = 1 then coltype = 'N'; else coltype = 'C';

 drop type;
 run;

 proc sort data = _qc_db_columns;
 by colname;
 run;

 /* Need the maximum variable length for a later step */

 proc sql;
 select max(formatl)
 into :max_length
 from _qc_db_columns
 ;

 %let max_length = &max_length;

 /*
 Create the count(distinct x) as x phrases. The results of
 these will determine whether we do freq dist on the variables
 */

 select 'count (distinct(' || trim(colname) || ')) as ' || trim(colname)
 into :_qc_count_distinct separated by ','
 from _qc_db_columns
 ;

 /* Count distinct values of each variable, these counts used to decide if min/max/etc.. or freqs to be done */

 create table _qc_count_distinct as
 select &_qc_count_distinct
 from &lib..&table

16

 %if &where ne %then %do;
 where &where
 %end;
 ;
 quit;

 proc transpose data = _qc_count_distinct
 out = _qc_count_distinct_xpose (rename = (_name_ = colname col1 = cnt)) ;
 var _numeric_;
 run;

 /*
 If the count distinct has found < &freq_limit distinct values, treat the variable
 as a categorical variable, even if it is numeric
 */

 %let numeric_fld_cnt = 0;
 %let char_fld_cnt = 0;

 proc sql;

 /* Numeric columns will be run through proc summary */

 select d.colname
 into :numeric_cols separated by ' '

 from _qc_db_columns d,
 _qc_count_distinct_xpose c

 where d.colname = c.colname
 and d.coltype = 'N'
 and c.cnt > &freq_limit
 ;

 %let numeric_fld_cnt = &sqlobs;

 /*
 Any column with < &freq_limit distinct values is freqqed. This means that some
 character columns will have no analysis performed on them, eg. name fields.
 */

 select d.colname, d.colname
 into :char_col1 - :char_col&sysmaxlong
 , :char_cols separated by ' '

 from _qc_db_columns d,
 _qc_count_distinct_xpose c

 where d.colname = c.colname
 and c.cnt <= &freq_limit
 ;

 %let char_fld_cnt = &sqlobs;

17

 quit;

 %if &numeric_fld_cnt = 0 and &char_fld_cnt = 0 %then %do;
 %put;
 %put No numeric or character fields on the table, that IS a mystery!! Aborting;
 %put;
 %return;
 %end;

 /*
 Generate numeric analysis. If the BY vvars are in play, the value of COUNT will be equal
 to the number of rows for each particular BY slice.
 */

 %if &numeric_fld_cnt ne 0 %then %do;

 proc summary data = &lib..&table (keep = &numeric_cols &by_vars_stmt) nway missing ;

 %if &where ne %then %do;
 where &where;
 %end;

 var &numeric_cols;

 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted; * DB2 does return rows in correct order for mixed-case character columns;
 %end;

 output out = _qc_metrics_num_n (drop = _:) n= ;
 output out = _qc_metrics_num_min (drop = _:) min= ;
 output out = _qc_metrics_num_max (drop = _:) max= ;
 output out = _qc_metrics_num_mean (drop = _:) mean= ;
 output out = _qc_metrics_num_stddev (drop = _:) stddev=;
 output out = _qc_metrics_num_sum (drop = _:) sum= ;
 run;

 /*
 Keeping _type_ around until now since I was unsure whether we'd want NWAY
 or individual summary points for each BY variable
 */

 proc transpose data = _qc_metrics_num_n
 out = _qc_metrics_num_n_xpose (drop = _label_
 rename = (_name_ = colname col1 = n)) ;
 var _numeric_;
 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted;
 %end;
 run;
 proc transpose data = _qc_metrics_num_min
 out = _qc_metrics_num_min_xpose (drop = _label_
 rename = (_name_ = colname col1 = min)) ;
 var _numeric_;
 %if &by_vars_stmt ne %then %do;

18

 by &by_vars_stmt notsorted;
 %end;
 run;
 proc transpose data = _qc_metrics_num_max
 out = _qc_metrics_num_max_xpose (drop = _label_
 rename = (_name_ = colname col1 = max)) ;
 var _numeric_;
 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted;
 %end;
 run;
 proc transpose data = _qc_metrics_num_mean
 out = _qc_metrics_num_mean_xpose (drop = _label_
 rename = (_name_ = colname col1 = mean)) ;
 var _numeric_;
 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted;
 %end;
 run;
 proc transpose data = _qc_metrics_num_stddev
 out = _qc_metrics_num_stddev_xpose (drop = _label_
 rename = (_name_ = colname col1 = stddev)) ;
 var _numeric_;
 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted;
 %end;
 run;
 proc transpose data = _qc_metrics_num_sum
 out = _qc_metrics_num_sum_xpose (drop = _label_
 rename = (_name_ = colname col1 = sum)) ;
 var _numeric_;
 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted;
 %end;
 run;

 proc sort data = _qc_metrics_num_n_xpose; by &by_vars_stmt colname; run;
 proc sort data = _qc_metrics_num_min_xpose; by &by_vars_stmt colname; run;
 proc sort data = _qc_metrics_num_max_xpose; by &by_vars_stmt colname; run;
 proc sort data = _qc_metrics_num_mean_xpose; by &by_vars_stmt colname; run;
 proc sort data = _qc_metrics_num_stddev_xpose; by &by_vars_stmt colname; run;
 proc sort data = _qc_metrics_num_sum_xpose; by &by_vars_stmt colname; run;

 data _qc_continuous_data;
 merge _qc_metrics_num_n_xpose
 _qc_metrics_num_min_xpose
 _qc_metrics_num_max_xpose
 _qc_metrics_num_mean_xpose
 _qc_metrics_num_stddev_xpose
 _qc_metrics_num_sum_xpose;
 by
 %if &by_vars_stmt ne %then %do;
 &by_vars_stmt
 %end;

19

 colname ;

 format min max mean stddev sum comma24.2
 n comma15.
 ;

 label colname = 'Column Name' ;

 run;

 %end;

 /* Loop over char fields (or numeric vars with < &freq_limit granularity) running a FREQ on each */

 %if &char_fld_cnt ne 0 %then %do;

 proc freq data = &lib..&table (keep = &char_cols &by_vars_stmt);

 %if &where ne %then %do;
 where &where;
 %end;

 %if &by_vars_stmt ne %then %do;
 by &by_vars_stmt notsorted; * DB2 does not return rows in correct order ;
 %end;

 %do i = 1 %to &char_fld_cnt;
 tables &&char_col&i / missing out = _qc_freq_&i (rename = (&&char_col&i = value)) ;
 %end;
 run;

 %if &max_length < 32 %then
 %let best = best&max_length;
 %else
 %let best = best32;

 %do i = 1 %to &char_fld_cnt;
 data _qc / view = _qc;
 length colname $32
 value $&max_length
 ;

 retain colname "&&char_col&i";

 set _qc_freq_&i (rename = (value = _val));

 /*
 We can't mix numeric / character fields, so convert all numeric to character. We have to use
 PUTC/PUTN to "hide" the format from the compiler otherwise it kaks when it sees what it thinks
 is a numeric format for character fields, ie. at compile time it doesn't consider the conditional
 stmt that would prevent such a thing from happening.
 */

 if vtype (_val) = 'N' then do;

20

 *put "&&char_col&i - in num";
 _fmt = "&best"; * if max_length is less than 16, we take the chance of losing digits !!!! ;
 if missing(_val) then
 value = 'null';
 else
 value = putn(_val,_fmt);
 end; else do;
 *put "&&char_col&i - in char";
 _fmt = "$&max_length";
 value = putc(_val,_fmt);
 end;

 drop _: ;
 run;

 proc append base = _qc_categorical_data
 data = _qc force;
 run;
 %end;

 %end;

 %let source = %sysfunc(getoption(source));
 options nosource;

 %put;
 %put --;
 %put %nrstr(%qc_db_data has completed, please check the log for any errors.) ;
 %put %nrstr(Successful completition will result in the creation of two datasets:) ;
 %put %nrstr(_qc_categorical_data - categorical variable value distributions) ;
 %put %nrstr(_qc_continuous_data - continuous data analysis, eg. min, max etc...) ;
 %put;
 %put %nrstr(Data from these two tables can be viewed from the SAS Explorer, exported to Excel) ;
 %put %nrstr(or printed (perhaps with appropriate ODS wrapper statements) to create output);
 %put --;
 %put ;

 options &source;

%mend qc_db_data;

