Paper BB-04

QC Your SAS® and RDBMS Data Using Dictionary Tables
Harry Droogendyk, Stratia Consulting Inc., Lynden, ON

ABSTRACT

In the context of our daily occupations we are always examining data. Whether we're testing ETL processes that
populate data marts, verifying data pulled for testing, or just becoming acquainted with unfamiliar data there are
some rudimentary things we do typically do. Simple analysis of continuous variables such as min, max, mean etc...
and frequency distributions of categorical variables are often used to provide quick insight.

This paper presents a macro that does the QC work for you, driving the process from dictionary tables, whether the
data is from SAS® datasets or sourced from any of the DB systems accessible by SAS.

INTRODUCTION

What types of things do we typically do when we're seeking to understand either the shape or the quality of our
data? Sometimes the interaction or relationship between variables is important but not always, or at least not
initially. Often simple analysis will provide enough insight into the data to quickly identify quality issues or give us a
good idea of the contents of the data set or table.

If simple analysis will suffice, we're left with a sleuthing exercise. Which of the character variables are really
categorical? Are all the numeric variables continuous or are some of them discrete? Once those questions are
answered, the appropriate SAS procedures can be run on the appropriate variables to create useful analysis.

Rather than having to go through the discovery exercise each time fresh data is encountered or new ETL results are
to be verified, | developed a macro that will do the grunt work for me. The rest of the paper describes the
methodology of the macro and how it makes the initial data QC exercise a very simple exercise. The macro is
found in the appendix.

LAZY PROGRAMMERS USE DICTIONARY DATA

Lazy programmers are a good thing. Lazy programmers would rather put a little additional thought into the design
of a solution and save themselves the subsequent maintenance that inflexible processes inevitably demand. Lazy
programmers don't like hard-coding and would rather allow the data to drive the process. Doing so frees the lazy
programmer from mundane tasks and allows time to be spent on much more useful tasks that add value and don't
require mind-numbing maintenance.

DATA DRIVEN PROCESSES

Data driven processes use metadata, or the characteristics of the data itself, to determine the processing required.
For instance, if the data contained only character columns or discrete numeric data, there would be no need to
generate min, max, means etc... Metadata will provide the requisite information needed to create a data-driven QC
process.

SURFACING METADATA

SAS has “dictionary” data that provide data about the data, or, metadata. The SAS dictionary data provides a great
deal of insight into our SAS environment. For example, we can identify the libraries defined to the SAS session,
data sets within those libraries and the columns within the data sets and their characteristics. Almost everything
associated with a SAS session, whether it be batch or interactive, can be surfaced through the metadata.

Additional dictionary information includes: assigned external files , macro variables, options, titles, formats etc...

The table and column metadata is very helpful for the QC exercise. Not only will the metadata provide the columns
within the table, but also the types and lengths of each variable. Using metadata which is returned programmatic-
ally, the lazy programmer is able to build a process that utilizes the metadata to create a flexible process that will
analyze the business data.

SAS metadata is available via three different avenues. PROC CONTENTS output can be directed to a SAS dataset
and manipulated as required. Secondly, a special library named DICTIONARY is available for PROC SQL queries.
DICTIONARY has a number of members, each relating to a different set of objects for which metadata is available,

eg. TABLES, COLUMNS, INDEXES etc... Thirdly, a series of SASHELP views are automatically available in any
SAS session to both the data step and SQL procedure. SASHELP views have slightly different names than the
DICTIONARY members, but they contain the same data. A sampling of SASHELP view names are VTABLE,
VCOLUMN, VINDEX.

SASHELP Views

Contents of 'Sazhelp'
Marne Size | Tvp
E=Jverbmar 17.0E Tab
Hed Vet fl S.OKE View
B vFormat S.0KE Viev
B vaont S.0KE Viev
[video S3.0kB Cat
E=]vidmsg 33.0KB Tab
L viewpt 21.0KE Cat.
o indes: S.OKE View
Hed viibnam S.OKE View
'-.-'mau:ru:u E.0KE Wiew
'-.-'meml:uer S5.0KE Wiew
B4 voption S.0KE Viev
'u'reFu:u:un S.0KE Wiy
'u'rememl:u S.0KE Wiy
'u'san:n:es .OKE View
B vscatlg S.0KB Viev
S.OKE View
S.OKE Viev
S.OKE View
S.OKE View
S.OKE View
S.OKE View
S.OKE View
S.OKE View
S.OKE View

Querying SAS Dictionary Data:

proc sql;
sel ect |ibnane, nmemmane, nane
from sashel p. vcol um
where |ibnane = ' WORK
and nmemmane = ' CLASS
order by nane

qui t;
Library
Name Member Name Column Name
FEFfrffrffffffffffrfffffrffrfrrffrrfrfrrfrrfrrfrrrerrrrerferferfrrfrrerrereees
WORK CLASS Age
WORK CLASS Height
WORK CLASS Name
WORK CLASS Sex
WORK CLASS Weight

In the same way that SAS has dictionary data, relational database management systems (RDBMS) have similar
facilities to provide metadata. Just as SAS has a set of tables or views to provide this data, each DB system also
has a similar set of tables to surface the metadata. Unfortunately, each RDBMS uses different names for the
dictionary table names and the column names within those dictionary tables.

Teradata example from DBC.COLUMNS. DBC is the database name where Teradata dictionary data is found.

+-&a” Collations ”
—-&a” Colurnnz
—-[27 Columns
[l DatabaseMame [CHAR 30
[TableMame [CHAR 30)
[0 Columntanme [CHAR 0]
[ColumnFomat [CHAR 30
[ColumnTide [WARCHAR BO)
[sPParameterType [CHAR 1)
[ColurmnType [CHAR 29
[l ColumrUDTMame [CHAR 30)
[l ColurmnLength (IMTEGER]
[l Defauralue MaRCHAR 1024]
[0 Mulable [CHAR 1)
[CommentString [WaRCHAR 255)
[l DecimalT atalDigits [SMALLIMT]
[l DecimalFractionalligitz [SMALLINT]

Querying Teradata dictionary data:

sel ect tabl enane, col umnane, columformat, col umtype
from dbc. col ums
wher e dat abasename “your _db'
and t abl ename ‘your _tabl e’
order by col umtype, col umname

DB2 example from SYSCAT.COLUMNS. SYSCAT is the schema where DB2 dictionary data is found:

X WinsQL Professional - Site License - [PRD1: Query
@ File Edit Wew Query Tools window Help

Users List | 5vSCAT | Filer |

| Result LCatalog ‘

SYSCAT.COLGROUPDISTCOUMTS ﬂ
SYSCAT.COLGROUPS
SYSCAT COLIDEMTATTRIBUTES

= ®® Fields

----- & TABSCHEMA,
----- & TABMAME

----- & COLMAME

----- & COLND

----- & TYPESCHEMA
----- & TYPENAME
----- & LENGTH

Querying DB2 dictionary data:

sel ect tabschemm, tabnane, col name, typenane
from syscat. col ums

where tabschema = ' DROOGH2'
and tabnane = ' QC_TEST

order by typenane, col nane

1

DB2 Dictionary Results:

TABSCHEMA TABNAMVE COLNANE TYPENAVE
DROOGH2 QC TEST ACCT ID BI G NT
DROOGH2 QC TEST CTD CREDI T_AM DECI MAL
DROOGH2 QC TEST CTD DEBI T_AM DECI MAL
DROOGH2 QC TEST DI SPUT_AM DECI MAL
DROOGH2 QC TEST CTD CREDIT_CT | NTEGER
DROOGH2 QC TEST CTD DEBIT_CT | NTEGER
DROOGH2 QC TEST ACCT FAM LY_CD SMALLI NT
DROOGH2 QC TEST ACCT_SUBFAM CD SMALLI NT
DROOGH2 QC TEST ACCT TYPE ID SMALLI NT
DROOGH2 QC TEST APPL_SUFFI X_NO SMALLI NT
DROOGH2 QC TEST CLI ENT_PRODCT_CD SMALLI NT
DROOGH2 QC TEST TBAL_CD SMALLI NT
DROOGH2 QC TEST ACCT _TYPE_MN VARCHAR
DROOGH2 QC TEST ACCT TYPE NA VARCHAR

The problem is beginning to emerge.... Each RDBMS system (and SAS) has different dictionary table names and
different column names within those dictionary tables. If the intent is to create a generalized, data-driven utility to
QC data, any data, it appears as though a roadblock has been encountered before we've begun. But..., doesn’t
SAS solve every problem?! J

SAS/ACCESS PRODUCTS
SAS is able to access non-SAS back-end data stores providing the appropriate SAS/Access product is licensed, eg.

SAS/ACCESS Interface to DB2
SAS/ACCESS Interface to ORACLE

Licensing the SAS/Access software provides the “middle-ware” that allows SAS to communicate with the RDBMS,
issue queries and commands to the data base, and receive query results from the data base. Often queries are
issued via “pass through” methodology where an SQL query written in the syntax of the database is “passed
through” a connection to the data base and the results returned to SAS.

SAS/ACCESS LIBNAME ENGINE

Alternatively, SAS/Access also provides a LIBNAME engine which allows database accessibility in a manner very
similar to that used for native SAS data sets. When a SAS/Access library is established, the database tables may
be created, queried and manipulated by standard SAS data steps and SAS procedure steps.

The SAS/Access libname statement often requires additional parameters to provide authentication credentials and
options specific to the data base engine for addressability and efficiency, eg.

i bname _db2 db2 dat abase=t est schema=dr oogh2;
libname _td teradata database=data_base_nane user=userid pass=password;

SURFACING RDBMS METADATA USING SAS/ACCESS

Once a LIBNAME connection has been established to the data base system, the DB metadata may be accessed
using standard SAS procedures such as PROC CONTENTS. In the example below, tracing options have been
specified to provide additional information on the operations going on under the covers.

Once the DB2 connection is made, the DB2 table metadata is being accessed via PROC CONTENTS.

options sastrace=',,,d" sastracel oc=sasl og nostsuffix;
i bname _db2 db2 dat abase=t est schema=dr oogh2;

proc contents data = _db2.qc_test;
run;

Log results showing the SASTRACE output:

DB2: AUTOCOMMIT is NO for connection O
516 options sastrace=",,,d" sastraceloc=saslog nostsuffix;
518 libname _db2 db2 database=test schema=droogh2;
NOTE: Libref _DB2 was successfully assigned as follows:
Engine: DB2
Physical Name: test

DB2: AUTOCOMMIT turned ON for connection id O
DB2_1: Prepared:

SELECT * FROM droogh2.QC_TEST FOR READ ONLY
DB2: COMMIT performed on connection O.

520 proc contents data = _db2.gc_test;

521 run;

NOTE: PROCEDURE CONTENTS used :

Behind the scenes additional processing is taking place that is not reflected in the SAS log. Through the
SAS/Access engine SAS is making a series of calls to the back-end database to request the information required
for PROC CONTENTS

§ SQLNumResultCols number of columns in table
§ SQLDescribeCol column name, type, length etc.
§ SQLColAttribute type specific column attributes

The end result is CONTENTS output that is quite familiar though the results are a little more sparse than is typically
returned for a SAS data set :

The CONTENTS Procedure

Data Set Name _DB2_.QC_TEST Observations -
Member Type DATA Variables 14
Engine DB2 Indexes 0
Created - Observation Length 0
Last Modified - Deleted Observations O
Protection Compressed NO
Data Set Type Sorted NO

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

12 ACCT_FAMILY_CD Num 8 11. 11. ACCT_FAMILY_CD
1 ACCT_ID Num 8 20. 20. ACCT_ID

13 ACCT_SUBFAM_CD Num 8 11. 11. ACCT_SUBFAM_CD
10 ACCT_TYPE_ID Num 8 11. 11. ACCT_TYPE_ID
11 ACCT_TYPE_MN Char 15 $15. $15. ACCT_TYPE_MN
14 ACCT_TYPE_NA Char 23 $23. $23. ACCT_TYPE_NA

3 APPL_SUFFIX_NO Num 8 11. 11. APPL_SUFFIX_NO
2 CLIENT_PRODCT_CD Num 8 11. 11. CLIENT_PRODCT_CD
9 CTD_CREDIT_AM Num 8 15.2 15.2 CTD_CREDIT_AM
8 CTD_CREDIT_CT Num 8 11. 11. CTD_CREDIT_CT
7 CTD_DEBIT_AM Num 8 15.2 15.2 CTD_DEBIT_AM

6 CTD_DEBIT_CT Num 8 11. 11. CTD_DEBIT_CT

5 DISPUT_AM Num 8 15.2 15.2 DISPUT_AM

4 TBAL_CD Num 8 11. 11. TBAL_CD

Despite the differences, it's apparent that the SAS/Access engine is returning table and column metadata for
database systems in exactly the same way it's provided for SAS datasets. A generalized approach to surfacing
metadata, regardless of the source of the data is possible.

QC YOUR DATA — A GENERALIZED APPROACH

Given a library reference pointing to the data store, whether it be SAS, DB2, Teradata, Oracle etc. it's possible to
generate column metadata with enough information to begin to make sensible determinations for the initial QC
exercise. While frequency distributions on many character fields may be helpful, it certainly won't be on a field
containing customer name. Numeric analysis including min, max and mean will suffice for most numeric fields, but
not for discrete numeric values that you might find in a column containing numeric codes.

The utility macro presented in the rest of this paper provides the methodology and options to drive the QC process.
Let’'s walk through the highlights of the %qc_db_data macro.

MACRO HELP TEXT

Macros are great, especially if usage documentation is available. J Utility macros of this nature benefit from the
inclusion of a positional parameter that will optionally generate “help” text in the log outlining the purpose of the
macro and the parameters it expects, ie. %qc_db_data(?). The resulting log text provides the macro
documentation.

%jc_db_data(help, lib=, table=, drop_colums=, keep_colums=, by_vars=, where=, freq_limt =
100)

QC / analyze the RDBMS table specified, creating frequency distributions or nmn, nax, mean,
stddev and sum dependi ng on the columm type and granularity of the data in the table

Par ms:
hel p any value in the sole positional paranmeter provides this help text
lib SAS libref via RDBMS engine for schenm that contains & able
table RDBMS table to be anal yzed, MJST be sorted by &y _vars (if specified)
drop_col ums comma-del imted, single-quoted colum nanes to be | GNORED i n anal ysis
- nust use %str('coll','col2') when specifying multiple colum nanes
- always specify "acct_id', 'cust_id type fields in this parm
keep_col ums comma-del i mited, single-quoted colum nanes to be considered for analysis
- nust use %str('coll','col2') when specifying multiple colum nanes
by_vars coma-del i mted, single-quoted colum nanes for BY groups
- nust use %str('coll','col2') when specifying multiple colum nanes
wher e WHERE cl ause to apply to input &chema.. & able to focus anal ysis
freg_limt upper limt of nunber of distinct values used to decide which vars generate

frequency distributions, default is 100 distinct val ues
- all colums with <= & req_limt distinct values will generate freq dist
- numcolums with > &freq_limt distinct values will generate num anal ysis

Macro |l ogic outlined bel ow

1.

oakwn

Sanpl

Derive tabl e col ums using PROC CONTENTS data=& ib.. & able, incorporate &Irop_col um

and &eep_colum criteria

count distinct values for all selected fields

nureric fields where count of distinct values > & req_limt, create m n/max/stddev/sum stats
run frequency distribution on any fields that have <= & req_limt distinct val ues

if &y_vars are specified, all stats will be created with the BY groups specified

create datasets of final results in remwork._qgc_conti nuous_data and

remaor k. _qc_cat egori cal _data

e |l nvocation:

I'i bnane rdbns <RDBMS engi ne> <RDBMS connection particul ars>;

%jc_db_data(lib = rdbns,
table = qc_test,
drop_col ums = Y%str('acct_id"),
by_vars = Y%str('acct_type_na'),
wher e = Ystr(acct_type_na |ike ' SAV%),
freq_limt = 50
)
INVOKING THE MACRO
i bname _db2 db2 dat abase=t est schema=dr oogh2;
%jc_db_dat a(
lib = _db2,
table = qc_test,
drop_colums = %tr('acct_id"'),
by _vars = U%str('acct_type_na'),
wher e = Ustr(acct_type_na like 'Wisa%),

freq_limt

100

1

As outlined in the macro generated help text, a library reference must be established before the macro is invoked.

Since

the library reference is established outside the macro the user has full control in defining the data source.

The data can reside anywhere that is addressable via the LIBNAME statement. In the example above, the data to
be examined resides in a DB2 table, hence the DB2 engine specification in the LIBNAME statement.

The macro parameters define the QC test particulars:

§
§
§

lib= the data resides in the libref _db2

table= the data table is qc_test

drop_columns= acct_id is a numeric column, but since we're not interested in analyzing a table key, it

is being dropped from the analysis

by vars= the results are required for each acct_type_na value, hence the by_vars parameter

where= not all accounts are to be analyzed, only those with the word “Visa” in the account type
name

freq_limit= if less than 100 distinct values are found in a column, a frequency distribution will be

generated, otherwise analysis will be performed on numeric columns (character
columns with more than 100 distinct values will be ignored)

MACRO FUNCTIONALITY

Since the reader of this paper is a SAS programmer it's not necessary to walk through the entire macro (available

in its entirety in the appendix). However, some important highlights of the macro functionality will be discussed.
Explanatory comments follow each code segment.

proc contents data = & ib.. & able

out _gc_db_col umms_al |
(keep = nanme type formatl
rename = (nane = colnanme)) noprint;

run;

Utilizing the availability of data table metadata provided by the LIBNAME (no matter where the data resides), use

PROC CONTENTS to extract the columnar metadata, storing it in a SAS dataset, keeping only the data items
required.

data _qc_db_col ums;
set _qc_db_colums_all;

% f &drop_colums > % hen %do;

if colname not in (%pcase(&drop_colums));
%end;

% f &keep_colums > % hen %do;

if colname in (%pcase(&keep_colums));
%end;

if type = 1 then coltype = 'N; else coltype = 'C;

drop type;
run;

Since not all the variables in the selected table are good candidates for analysis, macro parameters allow variables
to be specified in the KEEP and DROP parameters. In practice, it really only makes sense to specify one or the
other. Based on the &keep_columns and &drop_columns parameter values, subset the table variables.

/*
Create the count(distinct x) as x phrases. The
results of these will determ ne whether we do
freq distribution on the variables

*/

sel ect

"count (distinct(' || trinm(col nane) ||

")) as " || trimcolumm_nane)
into :_qc_count _distinct separated by ',’

from _gc_db_col ums

Continuing with the data-driven approach, programmatically generate “count distinct” SQL clauses from the table
metadata. These counts will be used to decide if frequency distributions ought to be produced for each variable.

/*
Count distinct val ues of each vari abl e,
t hese counts used to decide if
m n/ max/etc.. or freqgs to be done

*/

create table _gc_count _distinct as
sel ect & qc_count _distinct
fromé& ib..&able
% f &nwhere ne % hen % lo;
wher e &where %end;

1

Using the “count distinct” clauses built in the previous step, execute the counts against the source table, creating a
table of the distinct counts by variable. Note the WHERE clause is created only if the &where parameter was
specified when the macro was invoked. The result below is then transposed into a table called
_qc_count_distinct_xpose to make the columns available as rows.

EE,_ YIEWTABLE: Remwork. _qc_count_distinct_x
colnare | cht |
1 ACCT_FAMILY_CD 1
2 ACCT_SUBFAM_CD 3
3 ACCT_THPE_ID 10
4 ACCT_THPE_MM 10
] APPL_SUFFI=_MHO 1
E CLIEMT_PRODCT_CD 1
7 CTD_CREDIT_AM 1979
g CTD_CREDIT_CT 14
3 CTD_DEBIT_ &M 13350
10 CTD_DEBIT_CT B5
11 DISPUT_AM 1
12 TBaL_CD 9
/* Nunmeric colums will be run through proc summary */

sel ect d.col nanme
into :nunmeric_cols separated by '

from _gc_db_col ums d,
_gc_count _di stinct_xposec

where d.col name = c.col nane
and d.coltype ='N
and c.cnt > &freq_limt

1

% et nunmeric_fld_cnt = &sql obs;

The columns eligible for numeric analysis are those that are typed numeric and have more distinct values than the
cutoff for frequency distribution. After the SELECT executes, note that the &numeric_fld_cnt macro variable will
contain the number of variables requiring numeric analysis.

/*
Any colum with < & reqg_limt distinct values is freqged.
This neans that sonme character colums will have no anal ysis
performed on them eg. nane fields.

*/

sel ect d.col nane, d.col nane
into :char_coll - :char_col &ysmaxl ong ,
:char_col s separated by '

from _gc_db_col ums d,
_gc_count _di stinct_xposec
where d.colname = c.col nane
and c.cnt <= &freq_limt ;

% et char_fld_cnt = &sql obs;

10

Any column, character or numeric, that has less distinct values than &freq_limit will be subject to frequency
distribution.

proc summary data = & ib..& able (keep = &uneric_cols &y vars_stnt)
nway m ssing ;

% f &where ne % hen % lo;
wher e &where;
%end;

var &nuneric_col s;

% f &by _vars_stmt ne % hen %do;
by &by vars_stnt notsorted; * RDBMS does not necessarily
return rows in correct order
for m xed-case character

col ums;
%end;
output out = _gc_netrics_numn (drop = _:) n=;
output out = _gc_netrics_nummn (drop = _:) mn=;
out put out = _gc_netrics_num max (drop = _:) max= ;
output out = _gc_netrics_num nmean (drop = _:) nean=;
output out = _gc_netrics_numstddev (drop = _:) stddevs;
out put out = _qgc_netrics_numsum (drop = _:) sun¥ ;

run;

The table columns identified as candidates for numeric analysis are processed by PROC SUMMARY. Note that the
WHERE and BY statements will only be included if required. As per the macro documentation, if BY variables are
being used, the incoming data MUST be sorted ! Since some databases ignore the case of column values when
sorting, NOTSORTED is specified on the BY statement in the event SAS and the back-end data store use different
collation schemes.

The separate output datasets created for each measure will be transposed and merged back together towards the
end of the process. Note as well the KEEP data set option where only the required variables are returned from the
data source. This makes a big difference in execution time when accessing large tables from DB systems.

proc freq data = & ib.. & able (keep = &char_cols &by _vars_stnt);

% f &where ne % hen % lo;
wher e &where;
%end;
* RDBMS sort order for m xed-case character colums differs;
% f &by _vars_stmt ne % hen %do;
by &by vars_stnt notsorted;
%end;

%lo i = 1 %o &har_fld_cnt;
tabl es &&char _col & / m ssing
out = &&char_col & (renane = (&&char_col & = value)) ;
%end;
run;

Run a PROC FREQ for the categorical character and numeric variables, specifying each variable in a separate
TABLE statement in order to save the frequency distributions in SAS datasets.

After a series of transposes and merges, the finished results are displayed in two datasets, one for categorical
variables, the other for continuous.

11

liir ¥YIEWTABLE: Remwork. qc_categorical_data

=10l x|

colhame walle ACCT_TYPE_Ma COUMT FERCEMT _ﬂ

il CLIEMT_PRODCT_CD 10223 b ellow “rellow Viza Card B246 22 83979961:

57 CLIEMT_PRODCT_CD 10224 b ellowe “rellowv Viza Card 21101 F7160200388

a3 CLIEMT_PRODCT_CD 12271 Flatinum Yiza Card 255 10C

) CLIEMT_PRODCT_CD 10226 Student Yiza Card 21567 10C

G0 CLIEMT_PRODCT_CD 10225 115 Yiza Card 1624 10C

E1 CLIEMT_PRODCT_CD 10227 Wiza Check Card run 1235 10C

B2 CTD_CREDMT_CT] Dividend Viza Card 17267 97.71929824€

E3 CTD_CREDMT_CT 1 Dividend Yiza Card a08 17430673458

£4 CTD_CREDNT_CT 2 Dividend Yiza Card B1 03452173834

™= YIEWTABLE: Remwork._qc_continuous_data] [
ACCT_THPE_MA Colurnn M ame i | rir | s | TREEm | ghdde FUm =

1 Cividend Yiza Card CTD_CREDIT_Ak 17 E¥0 000 251336 286 4289 A0,562.8C
2 Dividend Yiza Card CTO_DEBIT_Ab 17 B¥0 0oo 1050000 8404 37210 1.485.003.04
2 Gald Plus Viza Card CTD_CREDIT_Ak E.044 oo 1189272 11.25 190.59 Ea,000. 08
4 Gald Plus Viza Card CTC_DEBIT_AM E.044 000 8407080 28687 160673 173384219
4] Gold Premium Wiza Card CTD_CREDIT_Abkd 9523 000 456357 5.02 va.za 47 83808
B Gaold Premium Viza Card CTD_DEBIT_AM 9523 000 1940000 14883 E13.30 1.417.760.22
7 Gold Yiza Card CTD_CREDIT_Akd 4,805 0oo 2437.03 a.83 VE.05 42 637 5z
a Gaold Yiza Card CTC_DEBIT_AM 4805 000 3720236 25284 933.28 1.214.915.85
q Green Power Yiza Card CTD_CREDIT_AM a.847 0.00° 20,000.00 233 115.80 ¥4.295.01

10 Green Power Viza Card CTD_DEBIT_Ak .847 0oo 2000000 6219 37447 2171.704.34

Note the presence of the BY variable in each dataset. Results are presented within each BY variable value. The
WORK datasets may be saved to permanent libraries or output into presentation quality reports using ODS. The
usefulness of this macro could easily be extended for periodic QC procedures on the same type of data by keeping
figures for each period and comparing period over period values.

CONCLUSION

Flexible, maintenance-free, data-driven code is made possible by leveraging metadata. The SAS/Access engine
provides seamless access to back-end data and allows standard SAS PROCs to be run against database tables
providing rudimentary data analysis that can assist in rapid data discovery.

Please check my website below for the latest version of the %qc_db_tables macro as improvements will be made!

REFERENCES

SAS/Access 9.2 For Relational Databases Reference, Third Edition,
http://support.sas.com/documentati on/cdl/en/acrel db/63283/HT M L/defaul t/vi ewer. htm#/documentati on/cdl/en/acrel db/63283/H

TML/default/titlepage.htm

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Harry Droogendyk
Stratia Consulting Inc.

905-296-3595
www.stratia.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

12

http://support.sas.com/documentation/cdl/en/acreldb/63283/HTML/default/viewer.htm#/documentation/cdl/en/acreldb/63283/H
http://www.stratia.ca

/***

Aut hor : Harry Droogendyk harry@tratia.ca

Dat e: 2010-01- 28

SAS nacro to provide analysis of RDBMS table contents. See the macro docunent for nore information. To display
macro docunentation, invoke the macro with a single positional paraneter:

%jc_db_dat a(?)

/***l

%racro qc_db_dat a(hel p,
lib =,
table =,
drop_col ums
keep_col ums ,
by_vars =,
wher e =,
freg_limt = 100
)

% f 9% ength(&help) > 0 % hen %o;
Yput Ymrstr();
Yput Ymrstr();
Y%put Y%mrstr(%c_db_data(help, lib=, table=, drop_colums=, keep_columms=, by _vars=, where=, freq_lint = 100));
Yput Ymrstr();
Y%put Y%mrstr(QC / analyze the RDBMS tabl e specified, creating frequency distributions or nmin, nax, mean,);
Y%put Y%arstr(stddev and sum dependi ng on the colum type and granularity of the data in the table.);
Yput Ymrstr();
Y%put Y%mrstr(Parns:);

Yput Ymrstr(hel p any value in the sole positional parameter provides this help text);

Yput Ymrstr(lib SAS libref via RDBMS engine for schema that contains & able);

Yput Ymrstr(table RDBMS table to be anal yzed, MJST be sorted by &y _vars (if specified));
Yput Ymrstr(drop_col ums comma-del imted, single-quoted colum nanes to be | GNORED in analysis,);

Yput Ymrstr(- nust use %tr('coll','col2'") when specifying nultiple colum names);

Yput Ymrstr(- always specify "acct_id', 'cust_id type fields in this parm;

Yput Ymrstr(keep_col ums comma-del imited, single-quoted colum nanes to be considered for analysis,);
Yput Ymrstr(- nust use %tr('coll','col2') when specifying nultiple colum names);

Yput Ymrstr(by_vars comma-del i mted, single-quoted colum nanes for BY groups);

Yput Ymrstr(- nust use %tr('coll','col2') when specifying nultiple colum names);

Yput Ymrstr(wher e WHERE cl ause to apply to input &schenm.. & able to focus anal ysis);

Yput Ymrstr(freg_limt upper limt of nunber of distinct values used to decide which vars generate);
Yput Ymrstr(frequence distributions, default is 100 distinct val ues);

Yput Ymrstr(- all colums with <= & req_limt distinct values will generate freq dist);
Yput Ymrstr(- numcolums with > &freq_limt distinct values will generate num anal ysis);

13

mailto:harry@stratia.ca

Yput Ymrstr();

Y%out Y%mrstr(Macro |ogic outlined below);
Yput Ymrstr();
Y%put Ymrstr(
Y%put Ymrstr(and &eep_colum criteria);

Y%put Ymrstr(count distinct values for all selected fields);
Y%put Ymrstr(
Y%put Ymrstr(
Y%put Ymrstr(
Y%put Ymrstr(create datasets of final results in remwrk._qgc_continuous_data and);
Y%put Ymrstr(remwor k. _qc_cat egori cal _data);

Yput Ymrstr();

%ut Y%arstr(Sanmple |nvocation:);

Yput Ymrstr();

Y%ut Y%arstr(libname rdbns <RDBMS engi ne> <RDBMS connection particul ars>;);

Yput Ymrstr();

=

oakwn

Y%put Y%mrstr(%c_db_data%lib = rdbns,) ;

Y%put Ymrstr(table = qc_test,);

Y%put Ymrstr(drop_col ums = Ustr('acct_id),);

Y%put Ymrstr(by_vars = Ustr('acct_type_na'),);

Y%put Ymrstr(wher e = Ustr(acct_type_na like "SAV%),);
Y%put Ymrstr(freg_limt = 50);

Y%put Ymrstr());

Derive tabl e col ums using PROC CONTENTS data=& ib.. & able, incorporate &Irop_col um

Y%put Ymrstr(
Yput Ymrstr();

% et urn;
%end;
% ocal by_vars_stnt sample ;

/*

Clean up results datasets before we begin */

proc datasets lib = work nodetails nolist;

delete _qc: | ntype = data;
run;

quit;

/*

If BY vars have been specified, clean up the quotes so we can use the variable names in a BY statenent

% f &by_vars ne % hen %do;

% f &drop_col ums ne % hen
% et drop_colums = &drop_colums, &by_vars;
%l se
% et drop_colums = &by_vars;
%et by vars_stnt = %sysfunc(conpress(&y_vars,%tr(%))); /* 'For use in BY statenments */

%end;

/*

Identify character / nuneric fields in the table. |If &eep_colums / &drop_col ums
have been specified, we'll use that to define the colums we care deeply about. Creating
a SAS table of the RDBMS table colums we're interested in.

We're using the format as a proxy for length since SAS will return 8 for all nuneric fields,

14

*/

nureric fields where count of distinct values > & req_linit, create m n/mx/stddev/sum stats);
run frequency distribution on any fields that have <= & req_limt distinct values);
if &y_vars are specified, all stats will be created with the BY groups specified);

we want the actual format.

*/
proc contents data = & ib..& able
out = _qc_db_colums_all (keep = nane type fornmatl
renane = (nanme = col nane)
)
noprint;

run,

data _qgc_db_col umms;
set _qgc_db_colums_all;
% f &drop_colums > % hen %lo;
if colname not in (Y%pcase(&drop_colums));
%end;

% f &keep_colums > % hen %lo;
if colname in (%pcase(&eep_colums));
%end;

if type = 1 then coltype = "N ; else coltype = 'C;

drop type;
run;

proc sort data = _qc_db_col umms;
by col nane;
run;

/* Need the nmaxi mum variable length for a later step */

proc sql;
sel ect max(formatl)
into :max_|l ength
from _qc_db_col ums

% et max_length = &max_I ength;

/*
Create the count(distinct x) as x phrases. The results of
these will determ ne whether we do freq dist on the variables
*/

select 'count (distinct(' || trimcolname) || ")) as ' || trin(col nane)

into :_gc_count_distinct separated by ',
from _qc_db_col ums

/* Count distinct values of each variable, these counts used to decide if mn/nax/etc..

create table _qc_count _distinct as
sel ect & qc_count _distinct
fromé&ib.. & able

15

or fregs to be done

*/

% f &where ne % hen %do;

where &where
%end;
quit;
proc transpose data = _qc_count _distinct
out = _qc_count_distinct_xpose (rename = (_nanme_ = colnanme coll = cnt))

var _nuneric_;

run,

| *
|

f the count distinct has found < & req_limt distinct values, treat the variable

as a categorical variable, even if it is nuneric

*/
% et nureric_fld_cnt = 0;
% et char_fld_cnt = 0;
proc sql;
/* Nuneric colums will be run through proc sunmary */

sel ect d.col nane

into :numeric_cols separated by

from _qc_db_col ums d,
_gc_count _di stinct_xpose c

where d.col nane = c.col nane
and d.coltype ='N
and c. cnt > &freq_limt

% et nurmeric_fld_cnt = &sql obs;

/*

Any colum with < & reqg_limt distinct values is freqged. This neans that sone
character colums will have no analysis performed on them eg. nanme fields.

*/

sel ect d.col nane, d.col nane

into :char_col1l - :char_col &ysnaxl ong
, :char_cols separated by ' '

from _qc_db_col ums d,
_gc_count _di stinct_xpose c

where d.col nane = c.col nane
and c. cnt <= &freq_limt

% et char_fld_cnt = &sql obs;

16

quit;

% f &nurmeric_fld_cnt =0

%put ;

and &char_fld_cnt = 0 % hen %do;

%ut No nuneric or character fields on the table, that

%put ;
% et urn;
%end;

/*

Generate nuneric anal ysis.

to the nunber

*/

of

rows

for each particular BY slice.

% f &numeric_fld_cnt ne O % hen %lo;

IS a nysteryl! Aborting;

If the BY vvars are in play,

the val ue of COUNT will

be equal

proc summary data = & ib..& able (keep = &uneric_cols &by _vars_stnt) nway m ssing ;

% f &where ne % hen %do;
wher e &wher eg;

%end;

var &nuneric_cols;

% f &by _vars_stnt ne % hen %do;

by &by_vars_stnt notsorted; * DB2 does return

%end;

output out = _qc_metrics_numn (drop = _:)
output out = _qc_metrics_numnmnin (drop = _:)
output out = _qc_netrics_num max (drop = _:)
output out = _qc_netrics_num nean (drop = _:)
output out = _qc_metrics_numstddev (drop = _:)
output out = _qc_metrics_numsum (drop = _:)

run;

/*

rows

in correct order for

Keeping _type_ around until now since | was unsure whether we'd want NWAY
or individual

*/

proc transpose data

summary

out

var _nuneric_;
% f &by _vars_stnt ne % hen %do;
by &by_vars_stnt notsorted;

%end;
run;

proc transpose data

out

var _nuneric_;
% f &by _vars_stnt ne % hen %do;

_gc_netrics_numn
_qc_netrics_num.n_xpose

_gc_netrics_nummn

points for each BY variable

(drop
renane

_gc_netrics_numm n_xpose (drop

renane

_label _
(_nane_

_label _
(_nane_

17

col name col 1

col name col 1

m xed- case character

nj);

mn))

col ums;

by &by_vars_stnt notsorted;
%end;
run;
proc transpose data
out

var _nuneric_;
% f &by _vars_stnt ne % hen %do;
by &by_vars_stnt notsorted;
%end;
run;
proc transpose data
out

var _nuneric_;
% f &by _vars_stnt ne % hen %do;
by &by_vars_stnt notsorted;
%end;
run;
proc transpose data
out

var _nuneric_;
% f &by _vars_stnt ne % hen %do;
by &by_vars_stnt notsorted;
%end;
run;
proc transpose data

_gc_netrics_num max
_gc_netrics_num max_xpose (drop

renane

_gc_netrics_num nean
_gc_netrics_num nmean_xpose (drop

renane

_gc_netrics_num stddev
_gc_netrics_num stddev_xpose (drop

renane

_gc_netrics_numsum

out _gc_netrics_numsum xpose (drop =
rename =
var _nuneric_;
% f &by _vars_stnt ne % hen %do;
by &by_vars_stnt notsorted;
%end;
run;
proc sort data = _qc_netrics_num n_xpose; by
proc sort data = _qc_netrics_num ni n_xpose; by
proc sort data = _qc_netrics_num max_xpose; by
proc sort data = _qc_metrics_num nean_xpose; by
proc sort data = _qc_metrics_num stddev_xpose; by
proc sort data = _qc_netrics_num sum xpose; by
data _qgc_conti nuous_dat a;

merge _qc_metrics_num n_xpose

_gc_netrics_num.m n_xpose
_qc_netrics_num max_xpose
_qc_netrics_num nmean_xpose
_gc_netrics_num stddev_xpose
_qc_netrics_num sum xpose;

by

% f &by _vars_stnt ne % hen %do;

&by _vars_stnt
%end;

_label _
(_nane_ = colname coll = max)) ;
_label _
(_nane_ = colnane coll = nean))
= _l abel _
= (_nanme_ = colnane col 1l = stddev
_label _
(_nane_ = colname coll = sum)) ;

&y _vars_stnt col name; run;
&y _vars_stnt col nanme; run;
&y _vars_stnt col name; run;
&y _vars_stnt col name; run;
&y _vars_stnt col nanme; run;
&y _vars_stnt col name; run;

18

))

col nane ;
f or mat m n max nmean stddev sum conmma24. 2
n conmalbs.
| abel col name = 'Colum Nanme' ;
run;
%end;
/* Loop over char fields (or nuneric vars with < &req_limt granularity) running a FREQ on each */
% f &char_fld_cnt ne 0 % hen %o;
proc freq data = & ib..& able (keep = &char_cols &by_vars_stmt);
% f & here ne % hen %lo;
where &where;
%end;
% f &by _vars_stnt ne % hen %do;

by &by_vars_stnt notsorted; * DB2 does not return rows in correct order
%end;

%lo i =1 %o &har_fld_cnt;

tabl es &&char_col & / missing out = _qc_freq_& (rename = (&&char_col & = value))
%end;
run;

% f &max_length < 32 % hen

% et best = best&mmax_| ength;
%l se

% et best = best32;

%lo i = 1 %o &har_fld_cnt;
data _qc / view = _qc;
| engt h col nanme $32
val ue $&max_| engt h

retain col nane "&&char_col & ";
set _qc_freq_& (renane = (value = _val));

/*
We can't mix nuneric / character fields, so convert all nuneric to character. W have to use
PUTC/ PUTN to "hide" the format fromthe conpiler otherwise it kaks when it sees what it thinks
is anunmeric format for character fields, ie. at conpile time it doesn't consider the conditional
stnt that would prevent such a thing from happening.

*/

if vtype (_val) ="'N then do;

19

*put "&&char_col & - in nunt;

_fm = "&best"; * if max_length is less than 16, we take the chance of losing digits !!!!
if mssing(_val) then

value = "'null";
el se

val ue = putn(_val,_fnt);
end; el se do;

*put "&&char_col & - in char";
fnmt = "$&max| ength";
val ue = putc(_val,_fnt);
end;
drop _: ;
run;
proc append base = _qc_categorical _data
data = _qc force;
run;
%end;

%end;

% et source = Y%sysfunc(getoption(source));
options nosource;

%put ;

LT B R e e e T ;
Y%put Y%arstr(%c_db_data has conpl eted, please check the log for any errors.) ;

Y%pout Y%mrstr(Successful conpletition will result in the creation of tw datasets:) ;

Yput Ymrstr(_gc_categorical _data - categorical variable value distributions) ;

Yput Ymrstr(_gc_continuous_data - continuous data analysis, eg. mn, nax etc...) ;

%put ;

Y%put %mrstr(Data fromthese two tables can be viewed fromthe SAS Explorer, exported to Excel) ;
Y%put Y%mrstr(or printed (perhaps with appropriate ODS w apper statenents) to create output);

LT R R e I R T T ;
Y%put

options &source;

%rend gc_db_dat a;

20

