
SESUG 2015

1

Paper AD167

SAS® Data Integration Studio –

Take Control with Conditional & Looping Transformat ions
Harry Droogendyk, Stratia Consulting Inc.

ABSTRACT

SAS Data Integration Studio jobs are not always linear. While Loop transformations have been part of DI Studio for
ages, only more recently has SAS Data Integration Studio included the Conditional Control transformations to control
logic flow within a job. This paper will demonstrate the use of both the Loop and Conditional transformations in a real
world example.

.

INTRODUCTION

The SAS Data Integration Studio (DIS) graphical user-interface allows the creation of complex processes without a
great deal of typing. Built-in “transformations” are included to do most common SAS data processing tasks. Once
dragged onto the palette and connected to data objects, or to each other, the code generated by the transformations
is customized by specifying options through the GUI. When desired functionality isn’t available through the standard
transformations, users can create user-defined custom transformations or user-written code nodes to include custom
code directly in the job.

Until the most recent releases of DIS, it was only possible to conditionally execute portions of a job by using macro
code in a user-written code node or by co-opting the loop transformation to generate zero or one loop iterations.

Why bother with the rigmarole of building jobs using DIS and its transformations? Isn’t it much easier to bang the
code out yourself? At times it would be simpler to code jobs by hand, but doing so would preclude one of the
significant advantages of using DIS. When DIS is used to create data processing and reporting jobs a very useful
metadata “trail” is created. Once the job and the associated data structures are saved in the metadata, it’s much
easier to assess the impact of any potential changes to the job or data structures using the “Analyze” functionality of
DIS. Additional metadata reporting and insight can be generated using the results returned from other metadata
queries via tools like PROC METALIB.

This paper will walk through the process to create a real-world job that utilizes the Loop and Conditional Control
transformations. Not all possible options of the Loop/Loop End and Condition Start/End transformations will be
covered in this paper.

BUSINESS NEED

Daily text files are received from a third-party vendor, imported into SAS and loaded into a Teradata database. Since
the delivery of the text files is not as consistent as we would like, a control table is used to maintain the date of the
last text file processed. Each day the scheduled job reads the control table, extracts the last processed date and
attempts to load files for each day between the day following the last processed date to today’s date, date1 - dateN.
Since files must be processed in date order, when a missing file is encountered, the job must stop importing data.
However, even if we detect a missing file, we do want to continue checking for the presence of each date’s file until
dateN is reached so we can report on all the missing files.

In a typical looping scenario, two jobs are created:

1. The inner job is the one to be looped over. The inner job is defined with at least one parameter input which
is used to determine the date to process.

2. The outer job sets the parameter inputs, defines the loop and includes the inner job within the Loop and
Loop End transformations to cycle over the inner job N times.

In the business situation described above, the outer job reads the control table and creates a SAS dataset of the
dates between date1 and dateN. This dataset is used as input into the Loop transformation which creates the
parameters required by the inner job – in this case the parameter is a SAS date value. The inner job accepts the
parameter and looks for a file for the date value received. If the file is present, it will be imported and loaded into
Teradata. If it is not present, an email is generated and the import / loading code is skipped.

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

2

DIS JOB DIAGRAMS

The three figures below illustrate the DIS jobs to be discussed in the remainder of the paper.

The “&” on the Inner_Parameterized_Job icon indicates that the job has a parameter. Since the
Inner_Paramaterize_Job is included in the Outer_Loop_Job flow, only the Outer_Loop_Job is deployed, hence the
blue arrow in the icon.

Figure 1. DIS jobs in folder structure

Figure 2. Inner parameterized job details

Figure 3. Outer looping job details

CREATING THE INNER LOOPED JOB

As seen in Figure 2, Inner_Parameterized_Job contains a number of transformations and metadata table entries,
much like you’d see in any job. The two items of interest for the purposes this paper are the definition of the job
parameter and the presence of the Conditional Start / End transformations.

DEFINING THE JOB PARAMETER

The outer job will read the control table to determine the dates to be processed, create a dataset of all dates required
and loop over those dates, executing the inner job for each date found. For each iteration of the loop, the outer job
must pass the date value for that iteration to the inner job so the inner job knows what to process. DIS uses
parameters, or prompts, to pass the values required. There’s nothing mysterious about these parameters, they’re
really just macro variables and use the same mechanism employed by prompted EG processes or Stored Process
prompts. See http://www.stratia.ca/papers/stp_cascading_dynamic_prompts.pdf for an example of STP prompts.

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

3

Job parameters are defined in the Parameters tab of the Job Properties. Click New Prompt:

Figure 4. Job Properties

Enter the name of the prompt in the General tab. The name must be identical to the name of the macro variable the
code will use when it is referencing the date it is processing. In this case, the code will reference &file_dt . Since
internal SAS date values will be passed in, specify a Prompt Type of Numeric in the Prompt Type and Values tab.
Click OK. The Parameters tab will display the prompt particulars as seen in Figure 6.

Figure 5. Job Properties – defining a parameter

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

4

Figure 6. Parameter defined

USING THE JOB PARAMETER

The first transformation in the inner job shown in Figure 2 is a user-written code node which utilizes the &file_dt
macro variable containing the parameter value. The &file_dt value is substituted in the filename macro variable to
create the filename pattern. Via the PIPE option of the FILENAME statement, the Unix verb ls is used to list the files
in &fileloc that satisfy the &filename pattern.

The results of the ls command are read into the data step via the INFILE / INPUT statements. If the file is found, an
observation is written to the SAS data set _files_to_process . When the data step has consumed the results of the
Unix list files command, the macro %check_files is invoked to determine the next steps.

Figure 7. Using the &file_dt parameter value

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

5

As seen in Figure 8, %check_files uses a utility macro %attrn (see Appendix) to obtain the number of observations
in _files_to_process , the SAS data set populated with the successful results of the Unix list files command. If
&files_found = 0, an email is sent to interested parties to inform them of the missing file.

The criteria set out in the Business Need section required that if a file was missing, the process should continue to
check any remaining dates, but no subsequent files should be imported even if they are found. To support this
requirement , the macro variable &only_check_files is set to Y when a file is found to be missing and never
reinitialized. &only_check_files will be used in the Conditional transformation to determine if the file import and
database table load in the rest of the job should execute.

Figure 8. %check_files macro

SETTING UP CONDITIONAL PROCESSING

From the Transformations tab, drag the Conditional Start and Conditional End transformations to the palette. Using
the up/down arrows in the Control Flow tab in the Details section, position the Conditional Start transformation
immediately before the first transform to be conditionally executed and the Conditional End transformation
immediately after the last transform to be conditional executed.

Figure 9. Select Conditional Start and position it within the flow

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

6

Double click the Conditional Start transformation to access its properties. Provide a meaningful name and set the
condition. Note the condition specifies the &only_check_files macro variable created in the first code node. If the
condition is false, the job logic will jump to the Conditional End transformation, skipping all steps between the
Conditional Start / End transformations.

Figure 10. Name the condition

Figure 11. Specify the condition

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

7

Once the Conditional Start transformation properties have been set, click the Code tab to see the generated code, it
may be different than expected!

Lines 1-22 in Figure 12 are the Conditional Start code. Note the condition specified in the properties appears within
an %eval() function. The %eval function will ensure a value of 1 or 0 is generated, true or false. If the condition
evaluates to 0 (false), a macro %goto is executed to transfer control to the label exitetls_conditionW2UI7QUN .

Code found in lines 23 and following are the code from the job transformations between the Conditional Start and
Conditional End transformations. DIS essentially “copies” the code from the enclosed transformations when
generating the Conditional Start code.

Figure 12. Conditional Start generated code

After scrolling to the end of the Conditional Start generated code, the %goto label is found. If the condition if false, all
the code from lines 23 to 494 will be skipped.

Figure 13. End of Conditional Start generated code with %goto label

Save and exit the inner parameterized job.

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

8

CREATING THE OUTER LOOPING JOB

The outer looping job accesses the control table to determine the last file date successfully imported and loaded. A
data step DO loop populates a SAS dataset for each day from that date until today. The Loop transformation
consumes the SAS dataset to generate parameter values and invokes the inner parameterized job.

Create a new job and perform the following steps:

USER-WRITTEN CODE NODE TO CREATE DATES TABLE

Drag a user-written code node to the palette and double click to access its properties. Change Code Generation
Mode to “All user written”. Enter the code to read the control table and generate the data set with the required date
values. Note the data set and column names.

Figure 14. Generate looping date values

Right click the green grid (denotes work data set created) on the right end of the user-written code node, select
Properties.

Figure 15. Accessing properties of user-written wo rk table

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

9

In the Physical Storage tab, give the work table the same name as specified in the code, qp_dts .

Figure 16. Name the user-written work table

Click the Columns tab and define the file_dt column created in the user-written data step code.

Figure 16. Define user-written work table column(s)

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

10

CREATE THE LOOP – ORDER IS IMPORTANT !

1. Drag the Loop transformation to the palette from the Control section in the Transformations tab

2. From the folders tab, drag the newly completed Inner_Parameterized_Job to the palette, connecting it to the
Loop transformation. This step may take a few seconds to complete.

3. Drag the Loop End transformation from the Control section, connecting it to the Inner_Parametized_Job.

4. Double click the Loop transformation to access its properties, click the Parameter Mapping tab shown in
Figure 17. The Loop transformation is connected to both the user-written code node and the
Inner_Parameterized_Job. By virtue of those connections, the Loop transformation knows the:

a. parameter name / macro variable required by Inner_Parameterized_Job and displays it

b. data set variables available from the user-written work table

5. Select the file_dt column in the Mapped Source Column drop down

6. Click the Code tab in the Loop transformation, scroll down several screens and shudder – aren’t you happy
you don’t have to debug that ?!

7. Click OK

8. Save the outer job and deploy. When the outer job is deployed, all of the generated SAS code from the
inner job will also be included in the .sas file that results.

Figure 17. Loop transformation properties

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

11

UNEXPECTED BEHAVIOUR

Do you recall what the generated code looked like in the Conditional Start transformation? In addition to the
conditional code, all the code generated by the transformations between the Conditional Start and End
transformations was also included. For that reason, when the job is executed within DIS, the transformations
between the Conditional Start and End will never turn green to show they’re executing. Instead, the Conditional Start
icon will stay green until all the conditional code is completed.

Figure 18. Executing Conditional code in DIS

For the same reason, if the job encounters an error in the conditionally executed code, the Conditional Start icon will
turn red and the error will be reported as occurring in that step. Note the condition evaluation results returned in the
Details for the Conditional transformation, i.e. ETLS_DIAG: Condition flow did execute, condition was 10 > 0

Figure 19. Errors when executing Conditional code in DIS

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

12

CONCLUSION

The Loop and Conditional transformations are very useful additions to the DIS programmers’ toolkit. The flexibility
they afford allow more complex tasks to be developed in DIS without resorting to (as much) user-written code,
decrease the job maintenance effort and, as a bonus, make you look smart. ☺

In addition to the vanilla implementation demonstrated in this paper, the looping functionality can take advantage of a
grid environment by running iterations in parallel.

REFERENCES

SAS Online Documentation. Available at http://support.sas.com/documentation/onlinedoc/etls

Dhillon, Rupinder, Looping in SAS DI Studio, TASS presentation. Available at
http://www.torsas.ca/attachments/File/12142012/Dhillon-LoopingInDIStudio.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Harry Droogendyk
Stratia Consulting Inc.
conf@stratia.ca
www.stratia.ca/papers

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS Data Integration Studio – Take Control with

Conditional & Looping Transformations, continued SESUG 2015

13

APPENDIX

%attrn macro – downloaded from Roland Rashleigh-Berry’s repository found at
http://www.datasavantconsulting.com/roland/

/*<pre>
/ Program : attrn.sas
/ Version : 1.0
/ Author : Roland Rashleigh-Berry
/ Date : 04-May-2011
/ Purpose : Function-style macro to return a numeric attribute of a dataset
/ SubMacros : none
/ Notes : This is a low-level utility macro that other shell macros will
/ call. The full list of attributes can be found in the SAS
/ documentation. The most common ones used will be CRDTE and MODTE
/ (creation and last modification date), NOBS and NLOBS (number of
/ observations and number of logical [i.e. not marked for deletion]
/ observations) and NVARS (number of variables).
/
/ This macro will only work correctly for datasets (i.e. not views)
/ and where there are no dataset modifiers. If you need to subset
/ the data using a where clause or subset by using other means then
/ apply the subsetting and create a new dataset before calling this
/ macro.
/
/ Usage : %let nobs=%attrn(dsname,nlobs);
/
/===
/ PARAMETERS:
/-------name------- -------------------------description------------------------
/ ds Dataset name (pos) (do not use views or dataset modifiers)
/ attrib Attribute (pos)
/===
/ AMENDMENT HISTORY:
/ init --date-- mod-id ----------------------description------------------------
/ rrb 13Feb07 "macro called" message added
/ rrb 30Jul07 Header tidy
/ rrb 17Dec07 Header tidy
/ rrb 04May11 Code tidy
/===
/ This is public domain software. No guarantee as to suitability or accuracy is
/ given or implied. User uses this code entirely at their own risk.
/===*/

%put MACRO CALLED: attrn v1.0;

%macro attrn(ds,attrib);
 %local dsid rc err;
 %let err=ERR%str(OR);
 %let dsid=%sysfunc(open(&ds,is));
 %if &dsid EQ 0 %then %do;
 %put &err: (attrn) Dataset &ds not opened due to the following reason:;
 %put %sysfunc(sysmsg());
 %end;
 %else %do;

%sysfunc(attrn(&dsid,&attrib))
 %let rc=%sysfunc(close(&dsid));
 %end;
%mend attrn;

