
SESUG 2016

1

Paper DM-224

Your Database Can Do Complex String Manipulation Too!

Harry Droogendyk, Stratia Consulting Inc., Lynden, ON

ABSTRACT

Since databases often lacked the extensive string handling capabilities available in SAS®, SAS users were often
forced to extract complex character data from the database into SAS for string manipulation. As database vendors
make regular expression functionality more widely available for use in SQL, the need to move data into SAS for
pattern matching, string replacement and character extraction is no longer (as) necessary.

This paper will cover enough regular expression patterns to make you dangerous, demonstrate the various REGEXP*
SQL functions and provide practical applications for each.

INTRODUCTION

SAS has a wealth of character functions and call routines available in version 9.4 – 96 in all. Most databases have
far fewer character functions available in SQL, e.g. Teradata v15 has 30 character functions, Oracle 12c has 40
character functions that can be used within an SQL query. SAS functions are powerful and flexible, especially when
used in conjunction with looping and conditional features of the SAS language. As a consequence, SAS
programmers often move data unnecessarily from the database into SAS simply to perform complex string
manipulation. Or, it may be that implicit pass-through queries (those using the SAS/Access libname to read
database tables) utilize SAS functions that the SAS Access engine cannot convert to database-specific syntax and
pass to the database for processing. As a result, the data is brought into SAS and processed there.

While creative use of SQL string handling functions can help us process data where it makes sense, the family of
regular expression functions now available in many databases affords better opportunities to process data within the
database using SQL – without moving it out of the database! Though the majority of the examples in the paper were
developed in Teradata v15, the syntax should be largely portable to the SQL dialects used in other databases.

Note that this is NOT a “regular expression paper” per se. While the examples offered do contain regular expression

syntax and do work as advertised, the yawning gaps in my regex knowledge are vast and innumerable. My typical
modus operandi is the timeless “poke and hope” methodology fueled by nuggets gleaned from sites that offer regular
expression help (see links at the bottom of this paper). It’s certainly possible that the regular expression syntax
offered in this paper could have been written more concisely or efficiently by one more versed in the cryptic language
of regex.

The intent of this paper is to illustrate a number of examples where SQL regular expression functions have allowed
complex string manipulation operations to be performed in the database without pulling data into SAS. Since the
focus is on SQL, any database procedural languages and the functions and capabilities available within those
languages are not considered.

Most of the remainder of the paper will be a series of tables, syntax definitions and explanations and (hopefully)
useful examples with a minimum of arid verbiage.

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

2

COMMONALITY BETWEEN SAS AND SQL FUNCTIONS

Many of the familiar SAS character functions are available in SQL. While some have different names than their SAS
counterparts, it’s certainly possible to do most basic string manipulation in SQL using these functions. And, SQL has

additional functions or options that SAS does not have. Many string manipulation needs can be satisfied with built-in
SQL functions without using more complex and less maintainable regular expression functions.

When possible keep it simple!

String Processing SAS Function Teradata Function

trim trailing spaces TRIM(source) TRIM(TRAILING FROM source)

trim leading & trailing spaces STRIP(source) TRIM(source)

character length LENGTH(source) LENGTH(source)

find character’s 1
st
 position in a

string
INDEX (source, excerpt) INDEX (source, excerpt)

find character’s n
th

 position in a
string

 INSTR(source, excerpt, start pos,
occurrence)

extract portion of a string SUBSTR(source, start, length) SUBSTR(source, start, length)

extract portion of a string by
delimiter

SCAN(source, occur, delimiter) STRTOK(source, delimiter, occur)

split delimited values into rows STRTOK_SPLIT_TO_TABLE(key,
source, delimiter)

partial pattern matching (NOT) LIKE ‘abc%’ (NOT) LIKE ‘abc%’

character replacement TRANSLATE(source, replacestr,
string)

oTRANSLATE(source, string, replacestr)

string replacement TRANWRD(source,replacestr,string) oREPLACE(source, string, replacestr)

Table 1. SAS / Teradata function equivalents

ENHANCED FUNCTIONALITY REQUIRED

There are times when the basic SQL string handling functions will not suffice. Some examples of these cases are:

 checking for numeric value in character string (Netezza has isNumeric available in SQL Extensions Toolkit,
utterly inexplicably, most databases do not have this functionality, a null result from Teradata’s TO_NUMBER
function is reasonable proxy for the numeric check)

 alpha numeric pattern matching

 complex pattern matching, e.g. phone numbers with or without separators

 identifying the presence of a pattern anywhere in a string

 character replacement only where certain characters are (not) adjacent to the specified pattern

 extracting an unknown number of delimited values

It’s in cases like these where the power and utility of regular expression functions allows the user to manipulate the
data within the database and avoid unnecessarily data movement through the network to SAS.

REGULAR EXPRESSION BASICS

Despite the “poke and hope” disclaimer in the introduction, this paper must cover some regular expression basics to
allow potential applications of the regular expression functionality to become more evident to the reader.

In the words of www.regexbuddy.com, a regular expression “is a special text string for describing a search pattern.
You can think of regular expressions as wildcards on steroids”. The special text string includes tokens to describe
character types and patterns, anchors that specify string location, and qualifiers that specify in what quantity the
character types and patterns occur. While there are several different regex dialects in use, the vast majority of the
syntax is common between dialects. However, because the possibility of differences does exist, it’s important to
ascertain which dialect is used by the database to deliver successful results.

http://www.regexbuddy.com/

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

3

COMMON TOKENS

Token Meaning

. any character

\s any whitespace (space, tab, line break, form feed)

\d, [:digit:] any digit

[abc] single character a, b or c

[^abc] character other than a, b or c

[a-zA-Z] characters in the range: a-z and A-Z

\w any word (set of characters including [a-zA-Z0-9_]

(dog|cat) “dog” or “cat”

(…) capture everything enclosed in parenthesis

\ escape character used when searching for regex tokens, e.g. . ? + * $ ^

Table 2. Common regex tokens

COMMON ANCHORS

Anchor Meaning

^ start of string

$ end of string

\b word boundary (not supported by Oracle, consider using (\W|^|$) instead for)

Table 3. Common regex anchors

COMMON QUALIFIERS

Qualifier Meaning

? zero or one

* zero or more

+ one or more

{3} exactly 3 of whatever precedes, e.g. \d{3}

{3,6} between 3-6 of whatever precedes, e.g. [a-z]{3,6}

Table 4. Common regex qualifiers

The following example illustrates at least one item from each of the three preceding regex categories. In this case,
we’re searching for a userid of a specific format found at the end of a line in a server log:

XY|AB[\d]{4}[a-z]+\.$

- XY|AB literal XY or AB

- [\d]{4} exactly four digits

- [a-z]+ one or more lower case alphabetic characters

- \. literal period, escaped because period is also a token meaning any character

- $ at the end of the string

Login at 2016-09-18 09:23:17 userid XY1234b. - match

AB1234x. is the user’s ID - no match (userid value not found at end of line)

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

4

GENERAL NOTES:

1. ANSI SQL standards are a bit of a myth (there’s no tooth fairy either, sorry). Each database vendor seems to
tweak their implementation of each of these functions. Please consult your vendor’s documentation for
specific functionality and default function parameter information.

2. Different database vendors support different regex dialects. e.g. Oracle supports POSIX, Teradata typically
follows the Perl variant.

3. When creating columns using REGEXP_SUBSTR and REGEXP_REPLACE, always CAST to the specific type
and length required. Database defaults may be much different than desired, e.g. Teradata VARCHAR(8000).

4. Unless otherwise stated, the REGEXP function syntax and regular expression dialect have been tested on
Teradata. YMMV.

REGULAR EXPRESSION FUNCTIONS

Function Use

REGEXP_INSTR find starting or ending position of a string pattern in the source

REGEXP_SIMILAR / LIKE Boolean result - is string pattern in source?

REGEXP_SUBSTR extract a portion of source that matches string pattern

REGEXP_REPLACE replace a portion of source that matches string pattern

REGEXP_SPLIT_TO_TABLE split delimited string into rows, delimiter defined by regex pattern

Table 5. REGEXP SQL functions

1. REGEXP_INSTR

REGEXP_INSTR is used to find the starting or ending position of the string satisfied by the search pattern. It extends
the functionality of the “vanilla” INSTR function by allowing searches for a regex pattern rather than just basic text.

Parameter Use / Values

source column or literal to be searched

regex regex pattern

start position position in source to begin searching, relative to 1, default is 1

occurrence occurrence of string matching regex pattern, default is 1

return 0=starting position of matched string, 1=position following end of matched string, default is 0

match i=ignore case, c=case sensitive (additional, less commonly used values allowed as well)

Table 5. REGEXP_INSTR parameters

REGEXP_INSTR EXAMPLES

Typically the REGEXP_INSTR is used for the same purpose as the INSTR function – to locate the starting and/or
ending positions to be used in a SUBSTR function. e.g.

SELECT SUBSTR ('string', REGEXP_INSTR('string', 'regex'), 5) as zip_code;

Example 1.1:

Find the position of the zip code in the following address label information:

SELECT REGEXP_INSTR (

 'Joe Smith, 10045 Berry Lane, San Joseph, CA 91234',

 '[[:digit:]]{5}$') -- 45

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

5

o [[:digit:]] digits, 0-9 characters

o {5} exactly five of the preceding characters, i.e. 5 digits

o $ anchor at the end of the string, grab the last five digits

The regular expression is looking for five digits anchored to the end of the string. If the $ anchor were omitted, the
street number would be returned instead of the zip code. Result of query is 45 - the starting position of zip code.

Example 1.2:

Find the position of the delivery date, the 2
nd

 occurrence of eight digits preceded by a word boundary. The Part
number beginning with DT would not be a match since those eight digits are not preceded by a word boundary.

 SELECT REGEXP_INSTR (

 'Part DT12345678, ordered 20160928, delivered 20161001',

 '\b\d{8}',1,2,0) -- 46

o \b word boundary (i.e. so part number with DT prefix isn’t matched)

o \d{8} eight digits

o 1,2,0 1=starting position, 2=occurrence, 0=return starting position of match

The result is 46, the starting position of the delivery date. If delivery date (i.e. second set of eight digits preceded by
a word boundary) was not found in the string, the returned result would have been 0.

Example 1.3:

Specifying a RETURN parameter of 1 will return the position following the matched string, NOT the last position of the
matched string. Find the position following three non-alphabetic characters.

SELECT REGEXP_INSTR('123ABC','[^a-z]{3}',1,1,1,'i') -- 4

o [^a-z]{3} exactly three non-alphabetic characters

o 1,1,1 1=starting position, 1=occurrence, 1=return position following end of match

o ‘i’ case insensitive match, effectively regex pattern turns into [^a-zA-Z]

The result is 4, the position following the match.

2. REGEXP_SIMILAR

REGEXP_SIMILAR returns a Boolean result (1=true, 0=false) to indicate if data matching the regex pattern is found
in the source string. Since Teradata requires that the entire string match the search pattern, the regular

expression pattern specified must account for other characters within the source string as well.

Parameter Use / Values

source column or literal to be searched

regex regex pattern

match i=ignore case, c=case sensitive (additional, less commonly used values allowed as well)

Table 6. REGEXP_SIMILAR parameters

REGEXP_SIMILAR EXAMPLES

The REGEXP_SIMILAR function is often used in CASE statements or WHERE clauses.

SELECT * FROM schema.table

 where REGEXP_SIMILAR(char_column, 'regex', 'i') = 1

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

6

Example 2.1:

Select only rows where the text field contains programmers’ userids, i.e. userids starting with “pg”, ending in five
digits. The examples below provide some insight into the vagaries of the function.

SELECT REGEXP_SIMILAR ('Userid is pg26581', '\bpg\d{5}\b') ; -- 0

o \b word boundary at beginning of userid pattern

o pg literal “pg”

o \d{5} five digits

o \b word boundary at end of userid pattern

Since REGEXP_SIMILAR matches the entire string, the presence of “Userid is” results in a nomatch.

SELECT REGEXP_SIMILAR ('Userid is apg26581a','.*\bpg\d{5}\b.*') ; -- 0

o .* zero or more of any character

o \b word boundary at beginning of string

o pg literal “pg”
o \d{5} five digits

o \b word boundary at end of string

o .* zero or more of any character

The .* tokens have allowed for characters before and/or after the userid value, but the \b token demands that a word
boundary precede and follow the userid value. The presence of “a” before and after “pg26581” results in a nomatch.

SELECT REGEXP_SIMILAR ('Userid is pg26581', '.*\bpg\d{5}\b.*') ; -- 1

SELECT REGEXP_SIMILAR ('pg26581 - userid', '.*\bpg\d{5}\b.*') ; -- 1

o .* zero or more of any character

o \b word boundary at beginning of string

o pg literal “pg”

o \d{5} five digits

o \b word boundary at end of string

o .* zero or more of any character

The valid userid value is surrounded by word boundaries – match.

SELECT REGEXP_SIMILAR ('Userid is apg26581a','.*pg\d{5}.*') ; -- 1

o .* zero or more of any character

o pg literal “pg”
o \d{5} five digits

o .* zero or more of any character

The last example illustrates what’s really a false match. Since the word boundary requirements have been omitted
from the regular expression, the embedded userid value is deemed a match when it probably should not be.

Example 2.2:

The following example is for an Oracle database. If data matching the regex pattern is found within the source string,

the result is true – regardless what precedes or follows the matched string, i.e. no need to include the .* required by
Teradata. Since Oracle does not support \b for a word boundary, an alterative pattern was specified.

SELECT REGEXP_LIKE ('Userid is pg26581', ' (\W|^|$)pg\d{5} (\W|^|$)'); -- 1

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

7

o (\W|^|$) beginning of string, end of string, or not a word character (not alphanumeric)

o pg literal “pg”

o \d{5} five digits

o (\W|^|$) not a word character (not alphanumeric)

Example 2.3:

Select only rows where the NOTE_TXT field contains a phone number (Teradata).

SELECT wo_no, notes_txt, REGEXP_SIMILAR (notes_txt,

 '.*\d{3}[\s.-]?\d{3}[\s.-]?\d{4}.*') AS regex_flg

o .* zero or more of any character

o \d{3} exactly three digits

o [\s.-]? zero or one whitespace or period or dash characters

\s whitespace

.- period or dash

? zero or one occurrences of the characters defined by the pattern between []

o \d{3} exactly three digits

o [\s.-]? zero or one whitespace or period or dash characters

o \d{4} exactly four digits

o .* zero or more of any character

As the REGEX_FLG value in the output below indicates, phone numbers with various separators and those without,
matched the regular expression pattern.

Table 7. REGEXP_SIMILAR phone number example

3. REGEXP_SUBSTR

REGEXP_SUBSTR is similar to REGEXP_INSTR, but instead of returning the position of the matched string, it
returns the matched string itself.

Parameter Use / Values

source column or literal to be searched

regex regex pattern

start position position in source to begin searching, relative to 1

occurrence occurrence of string matching regex pattern

match i=ignore case, c=case sensitive (additional, less commonly used values allowed as well)

Table 8. REGEXP_SUBSTR parameters

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

8

REGEXP_SUBSTR EXAMPLES

Rather than simply testing the presence of data matching a regex pattern, or identifying the starting position of
matching data, REGEXP_SUBSTR can be used to extract the matched data from the text.

SELECT REGEXP_SUBSTR('string', 'regex') AS text;

Example 3.1:

Building on the phone number example in the REGEXP_SIMILAR section, REGEXP_SUBSTR can be used to
extract phone numbers from the text. Note the difference between the regular expression pattern used in the
REGEXP_SIMILAR function and that used for REGEXP_SUBSTR when executing in Teradata.

SELECT wo_no, notes_txt

 , REGEXP_SUBSTR (notes_txt, '\d{3}[\s.-]?\d{3}[\s.-]?\d{4}',1,1) AS phone1

 , REGEXP_SUBSTR (notes_txt, '\d{3}[\s.-]?\d{3}[\s.-]?\d{4}',1,2) AS phone2

 FROM schema.table

 WHERE REGEXP_SIMILAR (notes_txt, '.*\d{3}[\s.-]?\d{3}[\s.-]?\d{4}.*')

Where the Teradata REGEXP_SIMILAR requires the .* tokens to account for text before or after the phone number,
including those tokens in the REGEXP_SUBSTR function would result in the entire value of NOTES_TXT being
returned and not just the desired phone number.

o \d{3} exactly three digits

o [\s.-]? zero or one whitespace or period or dash characters

\s whitespace

.- period or dash

? zero or one occurrences of the characters defined by the pattern between []

o \d{3} exactly three digits

o [\s.-]? zero or one whitespace or period or dash characters

o \d{4} exactly four digits

Additional parameters in the REGEXP_SUBSTR function are:

o 1,1 search starting in position 1, grab 1
st
 occurrence

o 1,2 search starting in position 1, grab 2
nd

 occurrence

Example 3.2:

Regular expressions also allow us to identify data matching a pattern that is before, after or in proximity to another
pattern or value. In the example below, we want to identify a “host number” if it is available. If the data field,
ATTR_KEY, contains the literal value “Host” followed by a period, the digits immediately following “Host.” are the host
number. Because ATTR_KEY can contain any number of period-delimited components, we cannot simply hard-code
the REGEXP_SUBSTR occurrence option and extract the 4

th
 period-delimited item and assume it will be the host

number.

attr_key = 'Device.Hosts.Host.10.X_OUI_History.Layer1Interface'

SELECT REGEXP_SUBSTR (attr_key, '(?<=Host\.)[0-9]+') as host_no -- 10

o (?<=Host\.) positive lookbehind – is “Host.” in the string ?

o [0-9]+ one or more digits

 http://www.regular-expressions.info/lookaround.html states:

“Lookahead and lookbehind, collectively called "lookaround", are zero-length assertions just like the start and end
of line, and start and end of word anchors explained earlier in this tutorial. The difference is that lookaround
actually matches characters, but then gives up the match, returning only the result: match or no match. That is
why they are called "assertions". They do not consume characters in the string, but only assert whether a match
is possible or not”. (emphasis mine)

http://www.regular-expressions.info/lookaround.html

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

9

While the many intricacies of “lookaround”s is beyond the scope of this paper, a short explanation is required.  In
processing this mess, the regular expression first matches one or more digits [0-9]+, finding “10” in position 19 of the
string. But, before “10” is accepted, it first verifies that the text in the lookbehind regex can also be matched, i.e. does
the string which precedes the digits match the lookbehind regex. In this case “Host.” does precede the 10 and the
REGEXP_SUBSTR returns 10.

Example 3.3:

From the same data used in the second example, extract the last period-delimited value. Since the number of period-
delimited values varies among ATTR_KEY values we cannot simply extract the 6

th
 occurrence using the

REGEXP_SUBSTR option.

attr_key = 'Device.Hosts.Host.10.X_OUI_History.Layer1Interface'

SELECT REGEXP_SUBSTR(attr_key, '[^.]*$') as attr_key_last -- Layer1Interface

o [^.] match any character other than a period

o * zero or more times

o $ assert position at the end of the string

The regex is starting at the end of the string, and gobbling zero or more characters until it hits a period. Note that the
period does not have to be escaped when it’s within [].

4. REGEXP_REPLACE

REGEXP_REPLACE is similar to REGEXP_SUBSTR but instead of extracting data matching the regular expression,
the function replaces the matched text with other values (or nulls).

Parameter Use / Values

source column or literal to be searched

regex regex pattern

replacement replacement string or pattern

start position position in source to begin searching, relative to 1

occurrence occurrence of string matching regex pattern, 0=all

match i=ignore case, c=case sensitive (additional, less commonly used values allowed as well)

Table 9. REGEXP_REPLACE parameters

REGEXP_REPLACE EXAMPLES

 REGEXP_REPLACE is used to replace the contents of strings that match a regular expression pattern. The replace
string can also include additional regular expression patterns.

SELECT REGEXP_REPLACE('string', 'regex', 'replace', 1, 0, 'i') AS text;

Example 4.1:

Remove leading zeroes from a network identifier. Values that do not begin with 0 should not be altered. Results
after each query.

SELECT REGEXP_REPLACE ('PON-01','^0+',NULL) -- PON-01

SELECT REGEXP_REPLACE ('01A','^0+',NULL) -- 1A

SELECT REGEXP_REPLACE ('00','^0+',NULL) -- zero length string

o ^ assert position at the start of the string

o 0+ one or more zeroes

o NULL replacement value, i.e. remove zero, replace with nothing

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

10

Example 4.2:

Since different characters can be used as separators between phone number components, typically when storing
phone numbers all separators are removed. Rather than executing multiple oTranslate function calls, one
REGEXP_REPLACE can be used to accomplish the same result. The result of each query below is 5196472472.

SELECT REGEXP_REPLACE('519-647-2472','[^0-9]','',1,0) AS PHONE_NO;

SELECT REGEXP_REPLACE('519.647.2472','[^0-9]','',1,0) AS PHONE_NO;

SELECT REGEXP_REPLACE('519 647 2472','[^0-9]','',1,0) AS PHONE_NO;

SELECT REGEXP_REPLACE('(519) 647-2472','[^0-9]','',1,0) AS PHONE_NO;

o [^0-9] match any non-digit

o ‘’ replace with that which rocks dream of - nothing

o 1 start at position 1

o 0 replace all occurrences

Example 4.3:

Sometimes we only want to replace a string if it is preceded or followed by something specific while other
occurrences of the string are to be left unchanged. The nasty call log data example below contains Province / City /
NPA-NXX groups separated by commas (red font below is one such group, blue another). Unfortunately, when
multiple NPA-NXX values are found for a single Province / City, those multiple NPA-NXX values are also comma
delimited. Since two different delimited groups of values use the same delimiter, one of the delimiters must be
changed to allow the data to be parsed accurately.

The data as found in the log:

New Brunswick/KEDGWICK/506283, 506284, New Brunswick/BLACKVILLE/506586, 506843,

The data as required for accurate parsing:

New Brunswick/KEDGWICK/506283;506284, New Brunswick/BLACKVILLE/506586;506843,

The group delimiting commas have to stay, while those delimiting NPA-NXX values must be changed to semi-colons.
Note: there may be other ways to solve this problem using other regex patterns / instructions (perhaps “lookaround”?)
– those solutions will be left to the reader’s imaginative experimentation. 

with test_data as (

 SELECT 'New Brunswick/KEDGWICK/506283, 506284, New

Brunswick/BLACKVILLE/506586, 506843,' as log_value

)

SELECT REGEXP_REPLACE(log_value,'\,\s+(\d)',';\1',1,0) as fixed_value

 from test_data;

o log_value source column name
o \,\s+(\d)

\, match comma

\s+ one or more white space characters

(\d) match a digit, capturing group

o ;\1 replacement string, replace with ; and contents of capturing group

o ; literal semi-colon

o \1 back reference to the digit matched by the first capturing group (\d)

o 1 starting position in the string

o 0 replace all occurrences

Capturing groups were necessary to retain the digit portion of the matched string since the digit is required in the final
result. See the Recommended Reading section for links related to capturing groups and back references.

Now that the delimiters between the numeric values has been replaced with semi-colons, the big Province / City /
NPA-NXX values chunks can be extracted using a comma delimiter, perhaps by a query involving

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

11

REGEXP_SUBSTR as seen below. Since the number of Province / City / NPA-NXX groups is unknown,
SYS_CALENDAR.CALENDAR is being used as an “iterating index” in REGEXP_SUBSTR to extract all occurrences
of the groups in the source string.

select row_id

 , day_of_calendar as prov_city_group_no

 , regexp_substr(fixed_value,'[^,]+',1, day_of_calendar)

 as prov_city_group_value

 from fixed_separators a,

 (select day_of_calendar

 from sys_calendar.calendar

 where day_of_calendar between 1 and

 (select max(length(fixed_value) –

 length(oreplace(fixed_value,',', NULL)))

 from fix_separators)

) b -- sub-query to avoid large product join with CALENDAR

 where b.day_of_calendar between 1 and (length(a.fixed_value) –

 length(oreplace(a.fixed_value, ',', NULL)))

Results:

5. REGEXP_SPLIT_TO_TABLE

REGEXP_SPLIT_TO_TABLE differs from its cousin STRTOK_SPLIT_TO_TABLE in that a regular expression is
used to define the delimiting character(s) rather than STRTOK_SPLIT_TO_TABLE’s single value. The
*SPLIT_TO_TABLE functions allow the user to transpose multiple, delimited values from one column into a single
value in multiple rows.

The *SPLIT_TO_TABLE functions are unlike any other string handling functions in the SQL world. Unfortunately their
functionality is restricted by their somewhat crippled implementation - IMHO.  The output of these functions is
limited to a key value, a count and the extracted value. The key value must then be used in subsequent queries to
join back to the original table if additional columns from the original table are required in the final result set. See the
appendix for a complex example that required the creation of an intermediate key using the HASH_MD5 function.

In particular, the Teradata *SPLIT_TO_TABLE functions are quite finicky and strangely uncooperative at times (may
not apply to other database vendors implementations or more skillful Teradata users), e.g.

 the source “table” could not be a temporary table structure created with a WITH clause in some conditions

 only INTEGER and VARCHAR data types could be used as output keys, despite documentation indicating
NUMERIC could be used

 parsed output could only be delivered in UNICODE character set, not LATIN, thus doubling size
requirements

 output key had to be the same character set as the parsed output

One hopes database vendors, particularly Teradata, will continue to improve this function to enhance its usefulness.

Primary Key Value

Original 1 123;456;789

1 123

1 456

1 789

After

SPLIT_TO

_TABLE

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

12

select *

 from table (

 REGEXP_SPLIT_TO_TABLE(source_table.outkey

 , source_table.string_to_be_parsed

 , 'regex', 'i')

 RETURNS (outkey varchar(32) character set unicode

 , parsed_cnt integer

 , parsed_value varchar(8000) character set unicode

)

) AS split

Parameter Use / Values

source_table.outkey source table column to be used as output data’s key column

source_table.string_to_be_parsed source table column be parsed

regex regular expression that defines delimiting criteria

match i=ignore case, c=case sensitive (additional, less commonly used values allowed
as well)

outkey definition of column containing outkey – Teradata required UNICODE since
outkey character set must match parsed_value character set

parsed_cnt definition of column storing parsed value count, 1,2,3 …

parsed_value definition of column storing parse value – Teradata required UNICODE (which
requires 2x the length)

Table 10. REGEXP_SPLIT_TO_TABLE parameters

REGEXP_SPLIT_TO_TABLE EXAMPLE

 Example 5.1:

Example 4.3 in the REGEXP_REPLACE section illustrated a method to replace only certain delimiting commas with
semi-colons to allow parsing of in the source string via the iterative REGEXP_SUBSTR query.
REGEXP_SPLIT_TO_TABLE will allow us to skip the intermediate semi-colon delimiter change and use a different
regular expression to identify the big Province / City / NPA-NXX chunks and parse them into rows all in one step.

with test_data as (

 SELECT 'abc' as pk, 1 as hee, 'def' as haw,

 'New Brunswick/KEDGWICK/506283, 506284, New

Brunswick/BLACKVILLE/506586, 506843,' as log_value

)

select *

 from table (

 REGEXP_SPLIT_TO_TABLE(test_data.pk

 , test_data.log_value

 , '\,\s+(?=[^0-9])', 'i')

 RETURNS (pk varchar(6) character set unicode

 , prov_city_group_no integer

 , prov_city_group_value varchar(128) character set unicode

)

) AS sg

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

13

o test_data.pk source column to be used as output key

o test_data.log_value source column to be parsed
o \,\s+(?=[^0-9])

\, match comma

\s+ one or more white space characters

(?=[^0-9]) positive lookahead – does non-digit character follow comma & whitespace ?

o i case insensitive – doesn’t apply here, but function requires the parm

o pk output key column definition

o prov_city_group_no parsed value count column definition

o prov_city_group_value parsed value column definition

Results:

Teradata’s REGEXP_SPLIT_TO_TABLE function requires that the parsed value column be UNICODE and that the
output key character set be the same.. However, Teradata’s STRTOK_SPLIT_TO_TABLE does allow the output
column key to be LATIN even when the parsed value is UNICODE. In the words of Ralph Waldo Emerson, “A foolish
consistency is the hobgoblin of little minds, adored by little statesmen and philosopher and divines”. 

See the appendix for a comprehensive example that employs both STRTOK_SPLIT_TO_TABLE and
REGEXP_SPLIT_TO_TABLE.

CONCLUSION

It’s often easiest and most comfortable to fall back into the familiar SAS world that we know so well. Unfortunately,
doing so often forces us to move far too much data from the database down to the SAS server for processing. Often,

the results must then be pushed back to the database for downstream use. Since we want to be good stewards of
the resources at our disposal, it’s often necessary to push the envelope, move outside our comfort zone and stretch
the cranial cavity. SQL functionality has continued to mature, new features and capabilities are added in each
release – take advantage of the right tool for the right job in the right place to do things efficiently.

You may have heard that regular expressions are referred to as “write once, read never” code. That may be partially
true, but to ensure your code is as maintainable as possible, please do document well. As seen in the paper’s

examples, it’s helpful to document each token, anchor and qualifier within the regex to provide the most granular
information possible.

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

14

REFERENCES

http://docs.openlinksw.com/virtuoso/fn_regexp_instr.html
http://www.regular-expressions.info/lookaround.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/backref.html
http://www.regular-expressions.info/replacebackref.html

ACKNOWLEDGMENTS

I owe a debt of gratitude to a number of folks who’ve helped me with regular expressions and the REGEXP* SQL
functions. Unfortunately most of them I only know through their avatar or screen name on various forums and they
will remain oblivious to how much they’ve helped me and so many others. Two people must be specifically
acknowledged since they have directly contributed towards this paper’s content:

1. Dieter Noeth, the guru of all things Teradata, who answered some questions around the prickly bits of
REGEXP_SPLIT_TO_TABLE. If Dieter doesn’t know it, you don’t need to. 

2. Alice Lieu who patiently proofread the paper and offered very helpful content suggestions. Any errors that
remain are mine.

RECOMMENDED READING

o http://www.regular-expressions.info/
o https://www.regexbuddy.com
o https://regex101.com/  GREAT tool to develop and test regex

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Harry Droogendyk
Company: Stratia Consulting Inc.
Web: www.stratia.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://docs.openlinksw.com/virtuoso/fn_regexp_instr.html
http://www.regular-expressions.info/lookaround.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/backref.html
http://www.regular-expressions.info/replacebackref.html
http://www.regular-expressions.info/
https://www.regexbuddy.com/
https://regex101.com/
http://www.stratia.ca/

SESUG 2016

15

APPENDIX

The code below is a real-life example showing some of the REGEXP* functions used in the wild. The input data from &_intTable._raw is similar to the data found in the
LOG_VALUE examples in the main body of the paper. Each temp table appears on a separate page to allow entire sections to be seen together. Teradata requires WITH
temp tables to be defined in reverse order. Soooo, start on the 2

nd
 last page, scroll up to here, then back to the last page….

proc sql noprint;
 connect to teradata (user=me pass="my pass" server=myServer mode=teradata connection=global);

 /* I couldn't get the REGEXP_SPLIT_TO_TABLE thing to work with a WITH temp table, creating volatile

 ROW_ID is DECIMAL, not acceptable to REGEXP_SPLIT_TO_TABLE, convert to CHAR

*/

 execute (
 create multiset volatile table post_trunc as (
 select transaction_id
 , cast(cast(row_id as format 'z(16)') as char(16)) as row_id
 , operation_id
 , audit_dtm
 , auditobject_3
 , auditobject
 , auditfunction
 , auditfield
 , case when operation_id = 'Add' then new_value else old_value end as audit_value
 , old_value
 , new_value
 , userid
 , load_dtm
 from &_intTable._raw
 where auditfield = 'Geographical Tree'
 and audit_dtm > '2015-03-25 00:00:00'
) with data primary index (row_id) on commit preserve rows
) by teradata;

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

16

execute (
 create multiset volatile table &_intTable._1 as (

 /* Create something reasonable out of the weirdness in the geographical entries in Audit Log
 - yes, intermediate WITH tables must be defined in reverse order, yeah Teradata
 */

 /* 3. split out NPANXX values and bring in province / city extracted in previous step. The MD5 hash_key
 created in the previous step is our unique joining key.

 strtok_split_to_table(
 hash_key key value to be applied to each new row created, used to tie back to previous temp table
 npanxx_group_value string to be split
 ',' delimiter
)

 returns (
 hash_key key value to be applied to each new row created, used to tie back to previous temp table
 which contains row_id which allows us to join to the original data.

npanxx_no extracted piece count
 npanxx_value extracted piece, must be UNICODE apparently, UNICODE requires 2x the length of LATIN,
 hence 12 rather than the 6 length of the NPANXX value
)

 strtok_split_to_table is finicky. The npanxx_group_value must be UNICODE (requires double the normal length),

but the hash_key can be LATIN, unlike what’s required for REGEXP_SPLIT_TO_TABLE – go figure. Joining to previous temp
table to grab ROW_ID, Province and City name values.

 */

 with npanxx_split as (
 select sstt.*, pcg.row_id, pcg.province_nm, pcg.city_nm
 from table (
 STRTOK_SPLIT_TO_TABLE(prov_city_groups.hash_key, prov_city_groups.npanxx_group_value, ',')
 RETURNS (hash_key varchar(32) CHARACTER SET LATIN
 , npanxx_no integer
 , npanxx_value varchar(12) CHARACTER SET UNICODE)
) AS sstt,
 prov_city_groups pcg
 where sstt.hash_key = pcg.hash_key
)

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

17

 /* 2. prov_city_group_values are made up of 3 components:
 a. province name
 b. city name
 c. NPA/NXX values separated by commas

 [^/}+
 ^ - start of string
 / - delimiter
 + - be greedy, go to end of string

 We must create a unique key of the row_id || province || city to allow us to join
 the npanxx_split back to prov_city_groups. The REGEXP_SPLIT_TO_TABLE and STRTOK_
 SPLIT_TO_TABLE functions only allow the "outkey" to be carried into the result set
 */

 , prov_city_groups as (
 select row_id
 , prov_city_group_no

 , cast(trim(regexp_substr(prov_city_group_value,'[^/]+',1,1)) as varchar(32)) as province_nm
 , cast(trim(regexp_substr(prov_city_group_value,'[^/]+',1,2)) as varchar(64)) as city_nm
 , regexp_substr(prov_city_group_value,'[^/]+',1,3) as npanxx_group_value

 , sysudtlib.hash_md5(coalesce(row_id, '0') || coalesce(province_nm, '0') || coalesce(city_nm, '0')) as hash_key

 from split_groups
)

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

18

 /* 1. Split out the province/city/npanxx groups

 Source: one row New Brunswick/KEDGWICK/506283, 506284, New Brunswick/BLACKVILLE/506586, 506843,
 --
 12345678901234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6 7 8

 Result: two rows New Brunswick/KEDGWICK/506283, 506284,
 New Brunswick/BLACKVILLE/506586, 506843,

 regexp_split_to_table(
 row_id key value to be applied to each new row created, used to tie back to full audit data record
 audit_value string to be split

 '\,\s(?=[^0-9])' match comma followed by whitespace that is NOT followed by a digit
 \, escape literal comma
 \s+ white space, 1 or more
 (?=[^0-9]) ?= positive lookahead, assert that the regex [^0-9] can be matched, in sample
 above, only matched by ", " at position 38-39 because position 40 is not a digit

 'i' case insensitive, meaningless because we're not matching alpha characters, but function requires parm
)

 returns (
 row_id key value to be applied to each new row created, used to tie back to full audit data record
 prov_city_group_no extracted piece count
 prov_city_group_value extracted piece, must be UNICODE apparently, UNICODE requires 2x the length of LATIN,
 hence 8,000 rather than the 4,000 length of the audit_value field
)

 regexp_split_to_table is finicky. The outkey (row_id) must be character, hence the conversion in post_trunc. The
 npanxx_group_value must be UNICODE (requires double the normal length).
 */

 , split_groups as (
 select *
 from table (
 REGEXP_SPLIT_TO_TABLE(post_trunc.row_id, post_trunc.audit_value, '\,\s+(?=[^0-9])', 'i')
 RETURNS (row_id varchar(32) CHARACTER SET UNICODE
 , prov_city_group_no integer
 , prov_city_group_value varchar(8000) CHARACTER SET UNICODE)
) AS sg
)

Your Database Can Do Complex String Manipulation Too!, continued SESUG 2016

19

 /* 4. Bring it all together, oh my nerves... this is soooooo exciting. :-)

 Some transactions have duplicate npanxx values, eg. transaction_id = 235221. Dedup by program,
 transaction_id, audit_dtm, operation_id

 Need the trim() because some values have leading spaces.
 */

 select a.transaction_id
 , cast(a.row_id as decimal(18)) as row_id
 , a.operation_id
 , a.audit_dtm
 , a.auditobject_3
 , a.auditfield as geo_target_qualifier_cd
 , ns.province_nm
 , ns.city_nm
 , trim(ns.npanxx_value) as npanxx_from
 , trim(ns.npanxx_value) as npanxx_to
 , a.userid
 , a.load_dtm

 from post_trunc a,
 npanxx_split ns

 where a.row_id = ns.row_id
 and ns.npanxx_value is not null

 /* Need to dedup extract values, there are dups in the list of NPA-NXX values */

 qualify row_number() over (partition by auditobject_3, transaction_id, audit_dtm, operation_id, npanxx_from
 order by load_dtm desc
) = 1

) with data primary index (auditobject_3) on commit preserve rows
) by teradata ;

quit;

