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Abstract  
 
Have you found that most SAS data step code is quite readable?  SAS statements, functions, keywords and SI supplied routines are most 
often given meaningful names.  If the developer has been even somewhat verbose while naming data step variables, the final product can 
"read" quite easily. 
 
Sure it reads easy …, until you encounter the {*&%~(.:@|? special characters littered throughout the code!!  What in the world do those 
things mean?  Do we really need the funny characters?   
 
This paper will examine 10 implementations of special characters, each of them specially placed in the SAS language for your coding 
pleasure.  Special characters, properly utilized, allow you to write code more quickly, more efficiently, and, believe or not, more simply. 
 
Introduction  
 
Unabashed SAS fans extol the flexibility and usefulness of the SAS data step language for solving real-world problems.  It doesn’t seem 
to matter how goofy the input data is, or how complicated the processing requirements are, SAS with its “toolbox” of functionality, will 
often provide multiple solutions.  In addition, SAS code written on one platform often runs without modification on other platforms.   
 
SAS-L subscribers often see this played out.  A question is posted and three or four solutions are offered, each of them solving the 
problem differently.  As the level of solution sophistication and efficiency rises, more of SAS’s less obvious data step “tools” are invoked 
and special characters begin to litter the code!  New users usually find this flexibility somewhat daunting and as a consequence, stay with 
the same old methods they encountered early in their SAS life. 
 
This paper is an attempt to remove some of the mystery around those strange data step characters.  It is certainly not an exhaustive 
treatment of any of the characters or functionality involved.  See the SAS-L archives or SAS Online Documentation for all the intricacies 
and nuances of the subject matter. 
 
Let’s begin with several characters generally seen hanging around the often-used INPUT statement.  
 
1. Trailing @ 
 

The @ sign is a familiar sight in the INPUT statement, most often seen before variable names when text files with fixed-width fields 
are processed.  The @ is used to position the input pointer at a specific column of data, e.g. 
 
 INPUT @23 record_type  $3.; 
      or 
 INPUT @numeric_variable record_type $3.; 
 
It may be that the input file contains different types of data records.  From the single_at.txt  data file below, we want to keep only 
those records with a transaction code of ‘A’ ( add ) and discard those with a transaction code of ‘D’ ( delete ): 
 

Single_at.txt  
 

xaction   given  
      id   _name  surname  dept start_date 

-------------------------------------  
A 0013 Michael Card      12 23May2001 
A 0028 John    MacArthur 15 20Apr2002 
D 0002 
D 0004 
A 0014 Ravi    Zacharias 15 11Dec2001 
A 0016 James   Dobson    16 03Jan2002 
A 0018 RC      Sproul    AA 29Feb2000 
D 0005 
A 0020 Michael Horton    11 23Apr2003 

 
As the following code illustrates, we could read in the entire record, allow SAS to parse the input line appropriately, applying the 
specified ( or default ) informats and then output only the records we really want.  If our input file is comprised of 6 fields and 9 



records it probably wouldn’t matter from an efficiency standpoint..  However, if our input dataset contains 500 variables and is 4 gig 
in size …. efficiency matters! 
 

data adds ( drop = xaction ); 
  infile  'C:\stratia\sesug\data\single_at.txt'  pad missover; 
 
  input @1  xaction     $1. 
        @3  id          $4. 
        @7  given_name  $10.  
        @17 surname     $10. 
        @27 dept          
        @31 start_date  date9. ; 
 
  if xaction eq 'A';  /*  Keep only additions  */ 
run; 

 
To make this process more efficient, we must be able to read the xaction  field first, interrogate the value and only then  input the rest 
of the line if required.  In order to input only part of a line and retain the rest of the line for future input, we must use the trailing @ 
to hold the input pointer on the current data line.  Note the @ sign at the end of the third line of code: 
 

data adds ( drop = xaction ); 
  infile  'C:\stratia\sesug\data\single_at.txt'  ; 
 
  input @1  xaction     $1. @;  /*  Trailing @  */ 
 
  if xaction eq 'A';  /*  Keep only additions  */ 
 
  input @3  id          $4. 
        @7  given_name  $10.  
        @17 surname     $10. 
        @27 dept          
        @31 start_date  date9. ; 
run; 

 
What happens if the value of xaction is not equal to ‘A’?  The observation is not included in the output dataset and the automatic 
iteration of the data step “resets” the trailing @. 
 

2. Double Trailing @ 
 

We’ve just said the trailing @ is forgotten on the next iteration of the data step.  What happens if our input data has more than one 
observation per line of data or if the data for one observation spans more than one input line?  
 

double_at.txt   
 

A 0013 Michael Card 12 23May2001 A 0028 John MacArthur 
15 20Apr2002 D 0002 D 0004 
A 0014 Ravi Zacharias 15 11Dec2001 
A 0016 James Dobson 16 03Jan2002 
A 0018 RC Sproul AA 29Feb2000 
D 0005 
A 0020 Michael Horton 11 23Apr2003 

 
We could write some messy looping logic to handle data of this “structure” and deal with the LOST CARD message.  Or, we can 
save ourselves a great deal of grief and let SAS figure it out.  Double trailing @ signs instruct SAS to hold the input line pointer 
even across data step iterations.  Since SAS manages the looping, there’s no LOST CARD message and no confusion.  Note the 
@@ on the  /*  Hang on!!  */ lines. 
 
 

data adds    ( drop = xaction ) 
     deletes ( keep = id ); 
 
  length xaction     $1 



         given_name 
            surname $10 
                 id  $4 
               dept   4 
         start_date   8 
  ; 
  
  infile  'C:\stratia\sesug\data\double_at.txt'  ; 
 
  input xaction  

          id       @@;                /*  Hang on!!  */ 
 
  if xaction eq 'D' then  
      output deletes; 
  else do; 
      input given_name  
            surname     
            dept  

                 start_date date9. @@;  /*  Hang on!!  */ 
      output adds; 
  end; 
run; 

 
From the log and output shown below, it’s apparent that though our input data had only 7 records, SAS dealt with the misshapen 
data and created 9 observations in 2 different datasets in one pass. 
 

Log: 
 

NOTE: 7 records were read from the infile 'C:\stratia\sesug\data\double_at.txt'.  
      The minimum record length was 6. 
      The maximum record length was 54. 
NOTE: SAS went to a new line when INPUT statement reached past the end of a line. 
NOTE: The data set WORK.ADDS has 6 observations and 5 variables.  
NOTE: The data set WORK.DELETES has 3 observations and 1 variables.  

Output: 
 
Delete Transactions  
 id 

 
0002 
0004 
0005 
 

 
 
Add Transactions     
 
given_ 
name       surname       id     dept    start_date  

 
Michael    Card         0013     12     2001/05/23  
John       MacArthur    0028     15     2002/04/20  
Ravi       Zacharias    0014     15     2001/12/11  
James      Dobson       0016     16     2002/01/03  
RC         Sproul       0018      .     2000/02/29  
Michael    Horton       0020     11     2003/04/23  

 
3. Question Mark  ? 
 

Based upon the informat specified ( or defaulted ), SAS converts the input data to an internal format during input.  If the field is 
defined as numeric, non-numeric data will cause an error.  Dates must also be in the format specified ( better automatic date parsing 
functionality available in version 9 ).   
 
If the data value is not in the correct format, a number of things happen: 

 the field value is set to missing ( or the value defined in the INVALIDDATA system option ) 
 NOTE: Invalid data message … is raised, giving the field name, input record number and the offending columns 
 the input record is dumped to the log 
 the automatic _ERROR_ variable is set to 1 
 this sequence is repeated each time bad data is found until the system option ERRORS= limit is met. 



 
The complete log for the previous example showed that the 5th data line had an invalid numeric dept value, ‘AA’, hence the missing 
value in the “RC Sproul” observation. 
 

NOTE: Invalid data for dept in line 5 18-19. 
RULE:     ----+----1----+----2----+----3----+----4----+----5----+----6 
5         A 0018 RC Sproul AA 29Feb2000 29 
xaction=A given_name=RC surname=Sproul id=0018 dept=. start_date=14669 _ERROR_=1 _N_=7 

 
The default behavior can be problematic if you know the source data for certain fields are consistently bad.  If I root through my log 
looking for unexpected  invalid data, the many messages for the consistently bad fields may result in a genuine problem being 
missed.   Set the system option ERRORS to zero, that’ll suppress the messages!   NO!!  That’ll result in legitimate  input errors being 
missed.  In a perfect world it may be possible to simply push the file back to the originating department and have them recreate 
pristine data.  But what about those of us who live in more realistic situations?   
 
SAS permits the insertion of a question mark between the field name and field informat.  This allows the programmer to be pro-
active and acknowledge that a field value is often of the wrong type and suppress the “NOTE:  Invalid data for …” message for 
only the designated field.  Note the line flagged with  /*  ?  often invalid data  */   comment. 
 
 data adds ( drop = xaction ); 

  infile  'C:\stratia\sesug\data\single_at.txt' pad missover; 
 
  input @1  xaction     $1. 
        @3  id          $4. 
        @7  given_name  $10.  
        @17 surname     $10. 
        @27 dept      ?       /*  ?  often invalid data  */        
        @31 start_date  date9. ; 
 
  if xaction eq 'A';  /*  Keep only additions  */ 
run;  

 
 Log – note the absence of the invalid data message. 
 

NOTE: The infile 'C:\stratia\sesug\data\single_at.txt' is: 
      File Name=C:\stratia\sesug\data\single_at.txt,  
      RECFM=V,LRECL=60  
 
RULE:     ----+----1----+----2----+----3----+----4----+----5----+----6 
7         A 0018 RC        Sproul    AA 29Feb2000  
xaction=A id=0018 given_name=RC surname=Sproul dept=. start_date=14669 _ERROR_=1 _N_=7  

 
Note as well that the input record is still dumped and the _ERROR_ variable is set. 

 
4. Double Question Mark   ?? 
 

In a real world situation, the raw data input phase might be the first step in a longer, production process which runs overnight in a 
batch environment.  If real errors occur in the batch process, a home-grown SAS macro job processing mechanism will not allow the 
process to continue past the step in which the error occurred.  In datasteps, the non-zero value of  _ERROR_ will cause the job to 
stop.  This scenario poses a problem for this input data since the value of the dept field is often invalid.   
 
Well, there must be a solution, or else it wouldn’t be in this paper!!  SAS allows the specification of ?? ( double question marks ) in 
the INPUT statement to suppress the log notes and setting of _ERROR_.   Note the ?? on the dept input.  
 

%let error = 0; 
 
data adds ( drop = xaction ); 
  infile  'C:\stratia\sesug\data\single_at.txt'  pad missover lrecl=60; 
 
  input @1  xaction     $1. 
        @3  id          $4. 



        @7  given_name  $10.  
        @17 surname     $10. 
        @27 dept      ??       /*  ??  often garbage, not an error!!  */        
        @31 start_date  date9. ; 
 
  if xaction eq 'A';  /*  Keep only additions          */ 
 
  if _error_ then     /*  Records the real errors      */ 
      call symput('rc',put(_error_,1.)); 
run; 

 
%put Data adds step error switch is &rc; 

 
 Log – note absence of log errors and value of macro variable &error on datastep completion.  
 

NOTE: The infile 'C:\stratia\sesug\data\single_at.txt' is: 
      File Name=C:\stratia\sesug\data\single_at .txt, 
      RECFM=V,LRECL=60  
 
NOTE: 9 records were read from the infile 'C:\stratia\sesug\data\single_at.txt'.  
      The minimum record length was 6. 
      The maximum record length was 39. 
 
Data adds step error switch is 0 

 
As a bonus, both ? and ?? are valid in the INPUT function  as well and have the same effect as noted above. 
 

 e.g.  input(dept,? 4.); 
   input(dept, ?? 4.); 

 
5. Ampersand   & 
 

The ampersand does triple duty in SAS.   
 
a) In keeping with the raw data theme, the first use to be discussed involves the INPUT statement.  The default behavior for “list 

input” ( e.g. as we saw in the double trailing @ example, fields are not fixed width and do not begin in specific columns ) is to 
use a single space delimiter when inputting values.  In the event that the data contains spaces between words, for example, a 
person’s full name, the & format modifier must be used.  SAS expects that fields will then be delimited by at least 2 spaces. 

 
data list; 
   length fullname $20; 
   /*  specify & to get entire name */ 
   input fullname $ & age;  
cards; 
Josephus     45  
Paul Martin   67  
Ron Smith  14  
run;   

Format Modifier & 
Obs     fullname      age 
 
 1     Josephus        45 
 2     Paul Martin     67 
 3     Ron Smith       14 

 

 
b) Second, ampersands are most often used in macro variable references.  At the risk of gross over-simplification, macro variables 

contain text generated by a prior process or definition to be used by a subsequent process.  In the code example from 4. Double 
Question Mark, the macro variable &rc was created by the datastep which processed the input file.  Subsequent macro code or 
data steps could interrogate the value in the &rc macro variable and react appropriately.  

 
In an environment where directory or dataset names change regularly, it’s a very tedious and error-prone process to ensure the 
dynamic information is changed correctly, particularly in a long program.  It’s counter productive to be enslaved to your 
programs (http://www.prowerk.com/prowerk_V3/presentations/Sugi27_P65.zip ), there’s more interesting and valuable 
things to do with your time!  Deliverance may be as simple as defining macro variables to hold the dynamic information at the 
top of your program and using the macro variables references wherever the value is needed throughout the program. 

 
%let month = 200309; 
 

http://www.prowerk.com/prowerk_V3/presentations/Sugi27_P65.zip


. . . many lines later 
 
filename data "f:\projects\campaigns\&month\data"; 

 
Note that the string is wrapped in double quotes.  If single quotes had been used, the macro variable would not be resolved. 
 
While the SAS Macro Processing / Compile process is quite complicated, for the purposes of this discussion it may be distilled 
to the following: macro variables are ( hopefully ) resolved before the statements that reference them are compiled.  It is helpful 
to remember that SAS macro is really only text generation or text replacement.  When the macro processor runs, it attempts to 
“resolve” all the macro and macro variable references it finds.  The resolved values replace the original reference and the SAS 
code is compiled.  In the filename statement above, the SAS compiler will see: 
 

filename data "f:\projects\campaigns\200309\data"; 
  

 Ampersand = freedom from the world of error and the mundane!! 
 

c) Third, where an ampersand is not followed by non-blank character, it is used as a Boolean “AND” 
 
  if amt > 1000 & date > "20Feb2003"d then .. 
 
6. Underscore   _ 
 

There’s absolutely nothing magical about the underscore, but it’s the only special character allowed in a variable name.  For that 
reason, it’s a natural character to use when creating meaningful  variable names.  In the not so distant past, SAS variables were 
limited to only 8 characters.  This limitation led to very cryptic variable names: 
 
 cynslspc = cynetsls / pynetsls; 
 
With the increase to 32 character variable names and the use of the underscore, understandable variable names became possible: 
 
 curr_yr_net_sales_pct = curr_yr_net_sales / prev_yr_net_sales  
 
Use long names!!  It’s a great aid for those who follow you and provides a modicum of documentation.  Write readable code!! 
 
The data step generates automatic variables as well.  These variables are created by SAS and there’s nothing you can do about it 
except use them gratefully.  Automatic variables are automatically dropped and will not appear in the output dataset.   Examples: 
 

_n_     data step iterations, often useful as a counter 
_error_    error flag  
_infile_    variable that contains the entire INPUT buffer, not just the variables INPUT thus far 
_iorc_    I/O return code, set during modify / update operations 

test using %sysrc macro and SAS supplied mnemonics ( all of which begin with an underscore as 
well, e.g. _sok, _dsenmr etc.. ) 

  
Underscores also frame useful, special words.  ( also useful in PROCs ) e.g. 

_all_     all variables in the datastep  put _all_; 
_character_    all character variables defined to data step thus far 
_numeric_   all numeric characters defined to data step thus far 

 
7. Colon  : 
 

The subtle colon is another multi-purpose character.  You may have to peer closely to distinguish this little gem from the ubiquitous 
semi-colon. 
 
a) The colon is most widely used as a wildcard character.  Where field names have a common prefix, they may be referenced 

collectively using the colon character.   
 

Suppose a dataset contains 12 months of purchase data, number and dollar amounts of purchases, by month.  The fields are 
named: 
 

num_purch01, num_purch02, num_purch03 … num_purch12 and  
amt_purch01, amt_purch02, amt_purch03 … amt_purch12 .   



 
To refer to the purchase amt fields collectively and reference all 12 variables: 
 

amt_purch:  
 
 If the dataset really did contain only the 24 fields identified above, even a: would suffice, grabbing all fields starting with the 
letter ‘a’.  That’ll save a bunch of typing!   
 
 For example: 
 

proc print data = datalib.purchase_data ; 
     var amt_purch:; 
run; 
 
data yearly_sums ( drop = amt_purch: num_purch: ) ; 
    set datalib.purchase_data;  
     
    yr_amt_purch = sum( of amt_purch:  ); 
    yr_num_purch = sum( of num_purch:  ); 
run; 

 
Here’s a handy tip picked up from Ian Whitlock of SAS-L fame.  Ensure all the “working” variables in your data step begin 
with the underscore.  For example, DO loop counters, intermediate result fields etc..  Rather than having to spell out a long 
keep or drop statement to ensure only the good stuff is retained, use the colon modifier in the DROP option on the DATA 
statement to discard all variables beginning with underscore.  
 

  data datalib.my_new_data_set ( drop = _: ); 
  . . .  
   
 Simple, effective, smiley.   

 
b) A second popular use of the colon is as a wildcard in character value comparisons.  To extract all employees with a surname 

beginning with “SMIT” we could code an IF statement or WHERE clause with the SUBSTR function: 
 

 where substr(surname, 1,4) = 'SMIT'; 
 
Or, the colon could be used to denote “begins with”: 
 

where surname =: 'SMIT'; 
 
Same results, less code, more efficiency.   Crude benchmarking on my struggling laptop showed a 50% execution time savings 
using the colon wildcard over the SUBSTR method.  In a similar manner, other comparison operators can take advantage of the 
same shortcut: 
 

if surname >: 'SMIT'; 
if description in: ('Hi','Zoo','Comp'); 
if name =: pattern;  /*  length of pattern must be < length of name  */ 

 
Note:  the colon wildcard will not work in SQL.  Another set of operators must be used to achieve the same effect, see EQT. 

 
c) Third, the colon may be used when inputting list data ( extracting data from a non-blank column to the next blank column ) that 

requires an informat.  Normally the informat length would prevail and cause all sorts of problems if the field value was shorter 
than the specified length. Smith’s age was included with his name and Jones was skipped entirely when SAS went to a new line 
in an effort to find Smith’s age. 
 
data age; 
   input name $10. age ;        
datalines; 
smith 49 
jones 67 
droogendyk 29 
;run; 

Colon Format Modifier - Informat 
Obs       name       age 

 
 1     smith 49        . 
 2     droogendyk     29 
 



  
After the addition of the colon modifier, input data is read correctly: 

 
input name : $10. age ; 
 

Colon Format Modifier - Colon  
 
Obs    name          age 

 
 1     smith          49 
 2     jones          67 
 3     droogendyk     29 

 
8. Dash   single -  or double -- 
 

The single or double dash character is used to denote a range of variables by specifying the first and last variable name in the range 
desired.  Before the dash will make any sense, one must have some understanding of SAS’s loading of the PDV ( program data 
vector ).  As the compiler chews through the program, top down, variables are added to the PDV in the order in which they are 
encountered  in the data step.  In the example below, the order of variables in the PDV will be: 
 
 amt1 num1 amt2 num2 amt3 num3 single double 
 

data amts_ds; 
    amt1 = 100;  num1 = 10; 
    amt2 = 200;  num2 = 20; 
    amt3 = 300;  num3 = 30; 
    single = sum( of amt1 - amt3 ); 
    double = sum( of amt1 -- amt3 ); 
    put single=; 
    put double=; 
run; 

 
a) The single dash is a numbered range list and requires that the alphabetic prefixes of the start and end variable be the same and 

that the numeric portion of the first and last variable refer to a consecutive range of numbers.   
 

 single = sum( of amt1 - amt3 ); 
 
  is the same as 
 
 single = sum( amt1, amt2, amt3 ); 
 
 If the amt2 field did not exist, ’of amt1 – amt3’ would result in an error. 
 

b) The double dash refers to a named range list that selects the variables based on their position in the PDV.   
 

  double = sum( of amt1 -- amt3 ); 
 
   is the same as 
   
   double = sum( amt1, num1, amt2, num2, amt3 ); 
 

The double dash may be restricted to only numeric or character variables within the specified PDV range: 
 
    sum_nums = sum( of lo_numeric_field –numeric- hi_numeric_field ); 
     
   array chars{*}  lo_character_field –character- hi_character_field  ); 
 
c) There’s one more very handy use of the dash character.  Numeric formats right-justify and character formats left-justify results 

by default.  To change the default behavior, follow the format specification with a dash and one of the  justification characters, 
l, c, r: 

 
   put amt comma10.2-c;  /*  Center amount field  */ 



 
9. Asterisk  * 

 
We’ve seen a couple of short cuts that will allow us to very quickly define a list of variables without knowing how many variables 
might be returned by the list, the wildcard colon and the dash(es).  Suppose we want to define an array using a variable list or 
wildcard, but do not want to hard-code the expected number of variables.  If we do specify a number and we’re wrong, i.e. the array 
size is not equal to the number of variables, the data step will not compile. 
 
SAS documentation suggests the use of an asterisk to indicate that the array size is to be defined according to the number of 
variables indicated by the list or shortcut.   
 

array all_nums{*} _numeric_; 
array amts{*}      amt:     ; 
array counts{*}    count1 - count6; 

 
In actual fact, if the {*} is omitted from each of those lines, v8.2 code will compile and run exactly the same.  However , as the 
following example shows, you're far better not specifying the {*} when defining arrays ( example uses amts_ds  from item 8. ). 
 

176 
177  data _null_; 
178     set amts_ds; 
179     array all_nums{*} _numeric_ ; 
180 
NOTE: SCL source line. 
181     do over all_nums;  
           ---- 
           184 
ERROR 184-185: Explicitly subscripted arrays are not allowed to be operated upon by the DO OVER 
               statement.  

 
As the log snippet below shows, the very handy do over syntax may be used when {*} is omitted from the array definition: 

 
185 
186  data _null_; 
187     set amts_ds; 
188     array nums _numeric_ ; 
189 
190     do over nums; 
191        put nums= ' ' @; 
192     end; 
193  run; 
 

amt1=100  num1=10  amt2=200  num2=20  amt3=300  num3=30  single=600  double=630  
 
The data step asterisk is very helpful in other contexts.  Use {*} to refer to all elements of an array in PUT, INPUT and applicable 
SAS functions, e.g: 
  
 input amts{*} ; 
 sum(of amts{*}); 

 
We’re familiar with the asterisk and its use as the multiplier operator in mathematical statements.  In somewhat the same fashion, 
the asterisk is used to multiply  definitions or values.  Arrays can be initialized at definition time: 
 

array total_amts{12} (12*0);    /*  Fill all 12 buckets with nuthin' */ 
 

Another multiplier  function is available as well, this time as part of  the INPUT statement.  If a series of input fields share the same 
informat, the following syntax applies the informats appropriately: 
 

input (amt_purch01 - amt_purch12 ) ( 9*10.2 3*12.2 ); 
 



10. Parenthesis   ( ) 
 

The parenthesis are a handy “container” for all sorts of things in the dataset.  
 
Function arguments:   
 

sum(jan_sales, feb_sales, mar_sales ); 
 
Data set options  appear in parenthesis as well.  There are many occasions when programmers write code to deal with stuff that 
could be more efficiently dealt with via a dataset option.   
 
Do you know the data are in sorted order?  Use the dataset option and tell SAS about it to avoid unnecessary sorts in a subsequent 
process: 

 
data datalib.account_data ( drop = _: sortedby=account ); 

 
Create an index on the fly rather than executing an additional step to do so ( note, your mileage may vary with this technique ).  
DROP variables on the SET statement to avoid bringing them in just to throw them out.  
 

data test ( keep   =   account amt: num01 -- num12  
                 index  = ( account ) );  
   
      set dataset (  drop  = old:  
                    rename = ( account_num = account )  
                     where  = ( account_status = 'O' ) ); 

 . . . 
 
Conditional statements: 
 
 Are you still using massive if – then – else statements ?  Try the select with its parenthesis!  
 

select (rectype); 
   when (1)  output header; 
   when (2)  output detail; 
   otherwise  delete; 

   end; 
 
 UNTIL / WHILE clauses: 
 

  do until(last.account); 
   set test; 
     by account; 
    end; 
 
Conclusion  
 
The next time you’re confronted with a programming challenge, explore a little, search the SAS-L archives, peruse the Online Docs, dive 
into the toolbox and see if some of the lesser-known SAS hieroglyphics will help you solve the problem quickly and efficiently.   
 
There’s no reason to ignore the {*&%~(.:@|? special characters, they’ll likely make you and your code more productive! 
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